
Polyspace® Bug Finder™

User’s Guide

R2014a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Polyspace® Bug Finder™ User’s Guide
© COPYRIGHT 2013–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2013 Online only New for Version 1.0 (Release 2013b)
March 2014 Online Only Revised for Version 1.1 (Release 2014a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Project Configuration

1
What Is a Project? . 1-3

What is a Project Template? . 1-4

Open Polyspace Bug Finder . 1-5

Set Up Polyspace Metrics . 1-7
Requirements for Polyspace Metrics 1-7
Start Polyspace Metrics Server . 1-8
Configure Polyspace Preference . 1-9
Configure Web Server for HTTPS . 1-10
Change Web Server Port Number for Polyspace Metrics
Server . 1-12

Set Up Remote Verification and Analysis 1-13
Requirements for Remote Analysis 1-14
Start Server for Remote Analysis and Polyspace Metrics . . 1-15
Configure Polyspace Preferences . 1-16

Create New Project . 1-17

Add Source Files and Include Folders 1-19

Specify Analysis Options . 1-21
Specify Options in User Interface . 1-21
Specify Options from DOS and UNIX Command Line 1-22
Specify Options from MATLAB Command Line 1-22

Save Analysis Options as Project Template 1-24

Specify Text Editor . 1-27

iii

Define Custom Review Status . 1-29

Compilation Errors . 1-33

Model Synchronous Tasks . 1-34

Prepare Multitasking Code . 1-37
Model Interruptions and Asynchronous Events and
Tasks . 1-37

Are Interruptions Maskable or Preemptive? 1-39
Model Shared Variables . 1-41
Model Mailbox Messaging . 1-45
Atomicity and Interrupted Instructions 1-48

Priorities . 1-50

Annotate Code for Known Defects 1-51
How to Add Annotations . 1-51
Syntax for Annotations . 1-51

Annotate Code for Rule Violations 1-54
How to Add Annotations . 1-54
Syntax for Annotations . 1-55

Copy and Paste Annotations . 1-58

Predefined Target Processor Specifications 1-59

Modify Predefined Target Processor Attributes 1-62

Specify Generic Target Processors 1-64
Define Generic Target . 1-64
Common Generic Targets . 1-65
View or Modify Existing Generic Targets 1-66
Delete Generic Target . 1-67

Compile Operating System-Dependent Code 1-69
Predefined Compilation Flags for C Code 1-69
Predefined Compilation Flags for C++ Code 1-71

iv Contents

My Target Application Runs on Linux 1-73
My Target Application Runs on Solaris 1-74
My Target Application Runs on Vxworks 1-74
My Target Application Does Not Run on Linux, vxworks
nor Solaris . 1-75

Address Alignment . 1-76

Ignore or Replace Keywords Before Compilation 1-77
Content of myTpl.pl file . 1-77
Perl Regular Expression Summary 1-78

Analyze Keil or IAR Dialects . 1-80

Gather Compilation Options Efficiently 1-88

Specify Data Ranges for Global Variables 1-90
Overview of Data Range Specifications (DRS) 1-90
Specify Data Ranges Using DRS Template 1-90
Remove Non Applicable Entries from DRS File 1-92
DRS Configuration Settings . 1-93
Specify Data Ranges Using Existing DRS Configuration . . 1-96
Edit Existing DRS Configuration . 1-97
XML Format of DRS File . 1-98
Specify Data Ranges Using Text Files 1-104

Setting Up Project: Additional Information

2
Create Projects Using Visual Studio Information 2-2
Use Visual Studio Project . 2-2
Trace Visual Studio Build . 2-3

Cannot create project from Visual Studio build 2-6

Storage of Polyspace Preferences 2-7

v

Coding Rule Sets and Concepts

3
Rule Checking . 3-2

Custom Naming Convention Rules 3-3

Polyspace MISRA C and MISRA AC AGC Checkers . . . 3-10

Software Quality Objective Subsets (C) 3-11
Rules in SQO-Subset1 . 3-11
Rules in SQO-Subset2 . 3-13

Software Quality Objective Subsets (AC AGC) 3-16
Rules in SQO-Subset1 . 3-16
Rules in SQO-Subset2 . 3-16

MISRA C:2004 Coding Rules . 3-18
Supported MISRA C:2004 Rules . 3-18
MISRA C:2004 Rules Not Checked 3-56

Polyspace MISRA C++ Checker . 3-59

Software Quality Objective Subsets (C++) 3-60
SQO Subset 1 – Direct Impact on Selectivity 3-60
SQO Subset 2 – Indirect Impact on Selectivity 3-63

MISRA C++ Coding Rules . 3-69
Supported MISRA C++ Coding Rules 3-69
MISRA C++ Rules Not Checked . 3-89

Polyspace JSF C++ Checker . 3-95

JSF C++ Coding Rules . 3-96
Supported JSF C++ Coding Rules . 3-96
JSF++ Rules Not Checked . 3-121

vi Contents

Check Coding Rules from the Polyspace
Environment

4
Activate Coding Rules Checker . 4-2

Select Specific MISRA or JSF Coding Rules 4-6

Create Custom Coding Rules . 4-8

Format of Custom Coding Rules File 4-10

Exclude Files From Rule Checking 4-12

Allow Custom Pragma Directives 4-13

Specify Boolean Types . 4-14

Find Coding Rule Violations . 4-15

Review Coding Rule Violations . 4-16

Apply Coding Rule Violation Filters 4-18

Find Bugs From the Polyspace Environment

5
Choose Specific Defects . 5-2

Run Local Analysis . 5-3

Run Remote Batch Analysis . 5-4

Monitor Analysis . 5-5

vii

Specify Results Folder . 5-6

View Results in the Polyspace Environment

6
Open Results . 6-2

View Results Summary in Polyspace Metrics 6-3

Download Results From Polyspace Metrics 6-5

Filter and Group Results . 6-8

Generate Reports . 6-15

Review and Comment Results . 6-16

Import Comments from Previous Analyses 6-20

Code Metrics . 6-21

View Code Sequence Causing Defect 6-28

Results Folder Contents . 6-31
Files in the Results Folder . 6-31
Files in the ALL Subfolder . 6-31
Files in the Polyspace-Doc Subfolder 6-32

Windows in the Results Manager Perspective 6-33
Dashboard . 6-33
Results Summary . 6-37
Source . 6-39
Check Details . 6-45

Bug Finder Defect Categories . 6-47

viii Contents

Numerical . 6-47
Static Memory . 6-47
Dynamic Memory . 6-48
Programming . 6-48
Data-flow . 6-48
Other . 6-48

Common Weakness Enumeration from Bug Finder
Defects . 6-49

Command-Line Analysis

7
Run Analysis from the Command Line 7-2
Usage of Bug Finder at the Command Line 7-2
Complete Workflow Examples . 7-2

Manage Remote Analyses at the Command Line 7-4

Create Projects Automatically from Your Build
System . 7-6
Create Project in User Interface . 7-6
Create Project from DOS and UNIX Command Line 7-7
Create Project from MATLAB Command Line 7-8

Requirements for Project Creation from Build
Systems . 7-10

Polyspace Bug Finder Analysis in Simulink

8
Embedded Coder Considerations 8-2
Subsystems . 8-2
Default Options . 8-2

ix

Recommended Polyspace Bug Finder Options for Analyzing
Generated Code . 8-3

Hardware Mapping Between Simulink and Polyspace 8-5

TargetLink Considerations . 8-6
TargetLink Support . 8-6
Subsystems . 8-6
Default Options . 8-6
Lookup Tables . 8-7
Code Generation Options . 8-7

Run Analysis on Generated Code 8-8

View Results in the Polyspace Environment 8-9

Identify Errors in Simulink Models 8-10

Configure Model for Code Analysis

9
Model Configuration for Code Generation and
Analysis . 9-2

Configure Simulink Model . 9-3

Recommended Model Settings for Code Analysis 9-5

Check Simulink Model Settings . 9-7

Check Simulink Model Settings Before Code
Generation . 9-8

Check Simulink Model Settings Before Analysis 9-10

Annotate Blocks for Known Errors or Coding-Rule
Violations . 9-12

x Contents

Configure Code Analysis Options

10
Polyspace Configuration for Generated Code 10-2

Include Handwritten Code . 10-3

Specify Remote Analysis . 10-5

Configure Analysis Depth for Referenced Models 10-6

Specify Location of Results . 10-7

Check Coding Rules Compliance . 10-8

Configure Polyspace Options from Simulink 10-10

Configure Polyspace Project Properties 10-11

Create a Polyspace Configuration File Template 10-12

Specify Header Files for Target Compiler 10-15

Open Polyspace Results Automatically 10-16

Remove Polyspace Options From Simulink Model 10-17

Run Polyspace on Generated Code

11
Specify Type of Analysis to Perform 11-2

Run Analysis for Embedded Coder 11-5

xi

Run Analysis for TargetLink . 11-7

Monitor Progress . 11-8
Local Analyses . 11-8
Remote Batch Analyses . 11-8

Check Coding Rules from Eclipse

12
Activate Coding Rules Checker . 12-2

Select Specific MISRA or JSF Coding Rules 12-6

Create Custom Coding Rules File 12-8

Contents of Custom Coding Rules File 12-10

Exclude Files from Rules Checking 12-12

Allow Custom Pragma Directives 12-13

Specify Boolean Types . 12-14

Find Coding Rule Violations . 12-15

Review Coding Rule Violations . 12-16

Apply Coding Rule Violation Filters 12-18

xii Contents

Find Bugs from Eclipse

13
Run Analysis . 13-2

Customize Analysis Options . 13-3

View Results in Eclipse

14
Filter and Group Results . 14-2

View Results . 14-8

Review and Fix Results . 14-9

Understanding the Results Views 14-12
Results Summary . 14-12
Check Details . 14-14

Check Coding Rules from Microsoft Visual
Studio

15
Activate C++ Coding Rules Checker 15-2

Find Bugs from Microsoft Visual Studio

16
Run Analysis . 16-2

xiii

Monitor Analysis . 16-5

Customize Polyspace Options . 16-6

Open Results from Microsoft Visual Studio

17
Open Results in Polyspace Environment 17-2

xiv Contents

1

Project Configuration

• “What Is a Project?” on page 1-3

• “What is a Project Template?” on page 1-4

• “Open Polyspace® Bug Finder™” on page 1-5

• “Set Up Polyspace Metrics” on page 1-7

• “Set Up Remote Verification and Analysis” on page 1-13

• “Create New Project” on page 1-17

• “Add Source Files and Include Folders” on page 1-19

• “Specify Analysis Options” on page 1-21

• “Save Analysis Options as Project Template” on page 1-24

• “Specify Text Editor” on page 1-27

• “Define Custom Review Status” on page 1-29

• “Compilation Errors” on page 1-33

• “Model Synchronous Tasks” on page 1-34

• “Prepare Multitasking Code” on page 1-37

• “Priorities” on page 1-50

• “Annotate Code for Known Defects” on page 1-51

• “Annotate Code for Rule Violations” on page 1-54

• “Copy and Paste Annotations” on page 1-58

• “Predefined Target Processor Specifications” on page 1-59

• “Modify Predefined Target Processor Attributes” on page 1-62

• “Specify Generic Target Processors” on page 1-64

1 Project Configuration

• “Compile Operating System-Dependent Code” on page 1-69

• “Address Alignment” on page 1-76

• “Ignore or Replace Keywords Before Compilation” on page 1-77

• “Analyze Keil or IAR Dialects” on page 1-80

• “Gather Compilation Options Efficiently” on page 1-88

• “Specify Data Ranges for Global Variables” on page 1-90

1-2

What Is a Project?

What Is a Project?
In Polyspace® software, a project is a named set of parameters for your
software project’s source files. A project includes:

• Source files

• Include folders

• A configuration, specifying a set of analysis options

Use the Project Manager perspective in the Polyspace interface to create
and modify a project.

1-3

1 Project Configuration

What is a Project Template?
A Project Template is a predefined set of analysis options for a specific
compilation environment. When creating a new project, you have the option
to:

• Use an existing template to automatically set analysis options for your
compiler.

Polyspace software provides predefined templates for common compilers
such as IAR, Kiel, and VxWorks Aonix, Rational, and Greenhills. For
additional templates, see Polyspace Compiler Templates .

• Set analysis options manually. You can save your options to a custom
template and reuse them later. For more information, see “Save Analysis
Options as Project Template” on page 1-24.

1-4

http://www.mathworks.com/matlabcentral/fileexchange/35927-polyspace-compiler-templates

Open Polyspace® Bug Finder™

Open Polyspace Bug Finder
In MATLAB®, do one of the following:

• In the apps gallery, click Polyspace Bug Finder™.

• In the Command Window, enter:

polyspaceBugFinder

There are additional options for this command. For help, enter:

help polyspaceBugFinder

In Windows®, do one of the following:

• From the folder matlabroot\polyspace\bin, double-click the Polyspace
Bug Finder icon.

• Double-click a desktop Polyspace Bug Finder shortcut.

To create this shortcut, in the folder matlabroot\polyspace\bin,
right-click polyspace-bug-finder. Then, from the context menu, select
Create shortcut.

• At a DOS command prompt, enter:

matlabroot\polyspace\bin\polyspace-bug-finder

matlabroot is your MATLAB installation folder, for example:

C:\Program Files\MATLAB\R2013b

In Linux®:

• Run the following command:

matlabroot/polyspace/bin/polyspace-bug-finder

Polyspace Bug Finder can be opened simultaneously with Polyspace Code
Prover™ or a second instance of Polyspace Bug Finder. However, only one
code analysis can be run at a time.

1-5

1 Project Configuration

If you try to run Polyspace processes from multiple windows, you will get a
License Error 4,0. To avoid this error, close any additional Polyspace
windows before running an analysis.

1-6

Set Up Polyspace® Metrics

Set Up Polyspace Metrics

In this section...

“Requirements for Polyspace Metrics” on page 1-7

“Start Polyspace Metrics Server” on page 1-8

“Configure Polyspace Preference” on page 1-9

“Configure Web Server for HTTPS” on page 1-10

“Change Web Server Port Number for Polyspace Metrics Server” on page
1-12

Requirements for Polyspace Metrics
You can use Polyspace Metrics to:

• Store verification and analysis results.

• Evaluate and monitor software quality metrics.

The following table lists the requirements for Polyspace Metrics.

Task Location Requirements

Project
configuration
and uploads to
server

Client
node

• MATLAB

• Polyspace Bug Finder

Polyspace
Metrics service

Network
server
or head
node of
MDCS
cluster

• MATLAB

• Polyspace Bug Finder

Activation is not required for the Polyspace
Metrics service

1-7

1 Project Configuration

Task Location Requirements

Downloading
complete results
from Polyspace
Metrics

Client
node
or a
network
computer

• MATLAB

• Polyspace Bug Finder

• Access to Polyspace Metrics server

Viewing results
summary from
Polyspace
Metrics

A
network
computer

Access to Polyspace Metrics server.

Start Polyspace Metrics Server

1 Select Options > Metrics and Remote Server Settings.

2 Under Polyspace Metrics Settings, specify:

• User name used to start the service— Your user name.

• Password — Your password.

• Communication port — Polyspace communication port number
(default 12427). This number must be the same as the communication
port number specified on the Polyspace Preferences > Server
Configuration tab

• Folder where analysis data will be stored— Results repository for
Polyspace Metrics.

3 If you want to configure your MDCS head node (for remote verifications
and analyses) as the Polyspace Metrics server, select Start the Polyspace
mdce service without security level. Otherwise, clear this check box.
For more information about starting your remote cluster service, see “Set
Up Remote Verification and Analysis” on page 1-13.

.

4 To start the Polyspace Metrics server, click Start Daemon.

1-8

Set Up Polyspace® Metrics

The software stores the information that you specify through the Metrics and
Remote Server Settings dialog box in the following file:

• On a Windows system, %APPDATA%\PolyspaceRLDatas\polyspace.conf

• On a Linux system, /etc/Polyspace/polyspace.conf

Configure Polyspace Preference

1 Select Options > Preferences.

2 Click the Polyspace Preferences > Server Configuration tab.

3 Under Metrics configuration:

• If you want the software to detect a server on the network that uses port
12427, click Automatically detect the Polyspace Metrics Server.

Otherwise, to specify the host computer for your Polyspace Metrics
server, click Use the following server and port. Enter an IP address
(or server name) and the Polyspace communication port number (default
12427). You must specify the same port number for all clients that use
the Polyspace Metrics service.

• By default, the software selects the Download results automatically
check box.

In the Folder field, specify a local folder for downloading result files
from Polyspace Metrics.

In Polyspace Metrics, when you click an item to view it within the
Polyspace environment, the software downloads results to the analysis
launch folder. If this folder does not exist, the software downloads
results to the folder specified in the Folder field. The default is C:\Temp.

If you clear the Download results automatically check box, when you
click an item in Polyspace Metrics, a dialog box opens. In this dialog
box, you can specify your locally accessible folder. When you exit the
Polyspace environment, the folder and its contents are not deleted.

• In the Port number field, specify the port number for communication
between the Polyspace environment and the Polyspace Metrics Web
interface. The default is 12428.

1-9

1 Project Configuration

• In the Web server port number field, specify the port number for the
Web server. For HTTP, the default is 8080.

If you change the port number from the default, you must configure the
same port number for the Polyspace Metrics server. See “Change Web
Server Port Number for Polyspace Metrics Server” on page 1-12 .

If you use HTTPS for your Web protocol, select Use secure HTTPS
protocol instead of HTTP protocol to access Metrics results.
Specify your port number in the corresponding field. For HTTPS, the
default is 8443.

There are additional steps to set up the Web server for HTTPS. See
“Configure Web Server for HTTPS” on page 1-10.

To view Polyspace Metrics, in the address bar of your Web browser, enter:

protocol://ServerName:WSPN

• protocol is http or https.

• ServerName is the name or IP address of your Polyspace Metrics server.

• WSPN is the Web server port number.

Configure Web Server for HTTPS
By default, the data transfer between Polyspace Code Prover and the
Polyspace Metrics Web interface is not encrypted. You can enable HTTPS for
the Web protocol, which encrypts the data transfer. To set up HTTPS, you
must change the server configuration and set up a keystore for the HTTPS
certificate.

Before you start the following procedure, you must complete “Start Polyspace
Metrics Server” on page 1-8 and “Configure Polyspace Preference” on page 1-9.

To configure HTTPS access to Polyspace Metrics:

1 Open the Metrics and Remote Server Settings dialog box. Run the following
command:

Polyspace_Install\polyspace\bin\polyspace-rl-manager.exe

1-10

Set Up Polyspace® Metrics

2 Click Stop Daemon. The software stops the mdce and Polyspace Metrics
services. Now, you can make the changes required for HTTPS.

3 Open the AppDataPolyspace_RLDatas\tomcat\conf\server.xml file in a
text editor. Look for the following text:

<!-
<Connector port="8443" SSLEnabled="true" scheme="https"
secure="true" clientAuth="false" sslProtocol="TLS"
keystoreFile="<datadir>/.keystore" keystorePass="polyspace"/>

->

If the text is not in your server.xml file:

a Delete the entire ..\conf\ folder.

b In the Metrics and Remote Server Settings dialog box, restart the
daemon by clicking Start Daemon.

c Click Stop Daemon to stop the services again so that you can finish
setting up the server for HTTPS.

The conf folder is regenerated, including the server.xml file. The file now
contains the text required to configure the HTTPS Web server.

4 Follow the commented-out instructions in server.xml to create a keystore
for the HTTPS certificate.

5 In the Metrics and Remote Server Settings dialog box, to restart the
Polyspace Metrics service with the changes, click Start Daemon.

To view Polyspace Metrics, in the address bar of your Web browser, enter:

https://ServerName:WSPN

• ServerName is the name or IP address of the Polyspace Metrics server.

• WSPN is the Web server port number.

1-11

1 Project Configuration

Change Web Server Port Number for Polyspace
Metrics Server
If you change or specify a non-default value for the Web server port number of
your Polyspace Code Prover client, you must manually configure the same
value for your Polyspace Metrics server.

1 Select Options > Metrics and Remote Server Settings.

2 In the Metrics and Remote Server Settings dialog box, select Stop Daemon
to stop the Polyspace Metrics server daemon.

3 In AppData\Polyspace_RLDatas\tomcat\conf\server.xml, edit the port
attribute of the Connector element for your Web server protocol.

• For HTTP:

<Connector port="8080"/>

• For HTTPS:

<Connector port="8443" SSLEnabled="true" scheme="https"
secure="true" clientAuth="false" sslProtocol="TLS"
keystoreFile="<datadir>/.keystore" keystorePass="polyspace"/>

4 In the Metrics and Remote Server Settings dialog box, select Start Daemon
to restart the server with the new port number.

5 On the Polyspace toolbar, select Options > Preferences.

6 In the Server Configuration tab, change theWeb server port number to
match your new value.

1-12

Set Up Remote Verification and Analysis

Set Up Remote Verification and Analysis

In this section...

“Requirements for Remote Analysis” on page 1-14

“Start Server for Remote Analysis and Polyspace Metrics” on page 1-15

“Configure Polyspace Preferences” on page 1-16

You can run the following types of verification and analyses.

Analysis type Run when

Remote batch
Remote
interactive

Source files are large (more than 800 lines of code
including comments), and execution time of verification
is long.

Local Source files are small, and execution time of verification
is short.

You can also use Polyspace Metrics with your remote verifications, but it is
not required. For more information about setting up Polyspace Metrics, see
“Set Up Polyspace Metrics” on page 1-7.

The following figure shows a network that consists of a MATLAB
Distributed Computing Server™ cluster and a Parallel Computing Toolbox™
client.Polyspace Code Prover and Polyspace Bug Finder are installed on the
head node and client nodes.

1-13

1 Project Configuration

To set up remote verification:

1 Configure the head node with the Metrics and Remote Server Settings
dialog box. See, “Start Server for Remote Analysis and Polyspace Metrics”
on page 1-15.

2 Configure the client node through the Server Configuration tab. See,
“Configure Polyspace Preferences” on page 1-16.

Requirements for Remote Analysis
The following table lists the requirements for remote analysis.

Task Location Requirements

Project
configuration
and job
submission

Client
node

• MATLAB

• Parallel Computing Toolbox

• Polyspace Bug Finder

Remote analysis Head
node of
MDCS
cluster

• MATLAB Distributed Computing Server

• Polyspace Bug Finder

1-14

Set Up Remote Verification and Analysis

For information about setting up a computer cluster, see “Install Products
and Choose Cluster Configuration”.

Start Server for Remote Analysis and Polyspace
Metrics
This procedure describes how to set up an MDCS head node that is also the
Polyspace Metrics server. If you do not want to set up Polyspace Metrics, use
the MDCS Admin Center to set up a server for your remote verifications. See
“Install Products and Choose Cluster Configuration”.

1 Select Options > Metrics and Remote Server Settings.

2 Under Polyspace Metrics Settings, specify:

• User name used to start the service— Your user name.

• Password — Your password.

• Communication port — Polyspace communication port number
(default 12427). This number must be the same as the communication
port number specified on the Polyspace Preferences > Server
Configuration tab.

• Folder where analysis data will be stored— Results repository for
Polyspace Metrics.

3 If you want to configure the MDCS head node as the Polyspace Metrics
server, under Polyspace MDCS Cluster Security Settings, you see the
following options with default values:

• Start the Polyspace mdce service without security — Selected.
The mdce service, which is required to manage the MJS, runs on
the MJS host computer with security level 0. If you want to require
authentication to use the remote server, use the MDCS Admin Center.
For more information about setting up security levels, see “Set MJS
Cluster Security”.

• MDCE service port — 27350.

• Security level in the cluster — 0. No security.

1-15

1 Project Configuration

• Use secure communication – Not selected. Communication is not
encrypted. You can, for example, increase the security level and use
secure communication.

4 To start the Polyspace Metrics and mdce services, click Start Daemon.

The software stores the information that you specify through the Metrics and
Remote Server Settings dialog box in the following file:

• On a Windows system, %APPDATA%\PolyspaceRLDatas\polyspace.conf

• On a Linux system, /etc/Polyspace/polyspace.conf

Configure Polyspace Preferences

1 Select Options > Preferences.

2 Click the Polyspace Preferences > Server Configuration tab.

3 Under MDCS cluster configuration, in the Job scheduler host name
field, specify the computer for the head node of the cluster. This computer
hosts the MATLAB job scheduler (MJS).

You can configure the MJS host through the MATLAB Distributed
Computing Server Admin Center. See “Configure for an MJS”.

4 Under Metrics configuration, specify the host computer for your
Polyspace Metrics server or let Polyspace detect the server. For more
information, see “Set Up Polyspace Metrics” on page 1-7.

1-16

Create New Project

Create New Project
This example shows how to create a new project in Polyspace Bug Finder.
Before you create a project, you must know:

• Location of source files

• Location of include files

• Location where analysis results will be stored

For the three locations, you will find it convenient to create three
subfolders under a common project folder. For instance, under the folder
polyspace_project, you can create three subfolders sources,includes and
results.

1 Select File > New Project....

2 In the Project – Properties dialog box, enter the following information:

• Project name

• Location: Folder where you will store the project file with extension
.psprj. You can use this file to open an existing project.

The software assigns a default location to your project. You can change
this default on the Project and Results Folder tab in the Polyspace
Preferences dialog box.

• Project language

If you want to use a template, select the Use template check box. Then,
click Next.

3 Select the template for your compiler. If your compiler does not appear in
the list of predefined templates, select Baseline. You can then start with a
generic template. Click Next.

4 Add source files and include folders to your project.

• Navigate to the location where you stored your source files. Select the
source files for your project. Click Add Source Files.

1-17

1 Project Configuration

• The software automatically adds the standard include files to your
project. To use custom include files, navigate to the folder containing
your include files. Click Add Include Folders.

5 Click Finish.

The new project opens in the Project Browser.

6 Save the project. Select File > Save or enter Ctrl+S.

1-18

Add Source Files and Include Folders

Add Source Files and Include Folders
This example shows how to add source files and include folders to an existing
project.

Add Sources and Includes

1 In the Project Browser, select your project.

2 Click the Add source icon .

3 Add source files and include folders to your project.

• Navigate to the location where you stored your source files. Select the
source files for your project. Click Add Source Files.

• The software adds standard include files to your project. To use custom
include files, navigate to the folder containing your include files. Click
Add Include Folders.

4 Click Finish.

Manage Include File Sequence

You can change the order of include folders to manage the sequence in which
include files are compiled. When multiple include files by the same name
exist in different folders, it is convenient to change the order of include folders
instead of reorganizing the contents of your folders. For a particular include
file name, the software includes the file in the first include folder under
Project_Name > Include.

In the following figure, Folder_1 and Folder_2 contain the same include file
include.h. If your source code includes this header file, during compilation,
Folder_2/include.h is included in preference to Folder_1/include.h.

To change the order of include folders:

1-19

1 Project Configuration

1 In the Project Browser, expand the Include folder.

2 Select the include folder that you want to move.

3 To move the folder, click either or on the Project Browser toolbar.

Related
Examples

• “Specify Results Folder” on page 5-6
• “Create New Project” on page 1-17

1-20

Specify Analysis Options

Specify Analysis Options
You can either retain the default analysis options used by the software or
change them to your requirements. To specify analysis options:

In this section...

“Specify Options in User Interface” on page 1-21

“Specify Options from DOS and UNIX Command Line” on page 1-22

“Specify Options from MATLAB Command Line” on page 1-22

Specify Options in User Interface
In the Polyspace Project Manager perspective, use the Configuration pane.

For instance:

• To specify the target processor, select Target & Compiler in the
Configuration tree view. Select your processor from the Target
processor type drop-down list.

1-21

1 Project Configuration

• To check for violation of MISRA C® rules, select Coding Rules. Check
the Check MISRA C Rules box. To check for a subset of rules, select
an option from the drop-down list.

Specify Options from DOS and UNIX Command Line
At the DOS or UNIX® command-line, append analysis options to the
polyspace-bug-finder-nodesktop command. For instance:

• To specify the target processor, use the -target option. For instance, to
specify the m68k processor for your source file file.c, use the command:

polyspace-bug-finder-nodesktop -sources "file.c" -lang c -target m68k

• To check for violation of MISRA C rules, use the -misra2 option. For
instance, to check for only the required MISRA C rules on your source file
file.c, use the command:

polyspace-bug-finder-nodesktop -sources "file.c" -misra2 required-rules

Specify Options from MATLAB Command Line
At the MATLAB command-line, enter analysis options and their values as
string arguments to the polyspaceBugFinder function. For instance:

• To specify the target processor, use the -target option. For instance, to
specify the m68k processor for your source file file.c, enter:

polyspaceBugFinder('-sources','file.c','-lang','c','-target','m68k')

• To check for violation of MISRA C rules, use the -misra2 option. For
instance, to check for only the required MISRA C rules on your source
file file.c, enter:

polyspaceBugFinder('-sources','file.c','-misra2','required-rules')

See Also polyspaceBugFinder

Related
Examples

• “Save Analysis Options as Project Template” on page 1-24

1-22

Specify Analysis Options

Concepts • “Analysis Options for C”
• “Analysis Options for C++”

1-23

1 Project Configuration

Save Analysis Options as Project Template
This example shows how to save your analysis options for use in other
projects. Once you have configured analysis options for a project, you can
save the configuration as a Project Template. You can use this saved
configuration to automatically set up analysis options for other projects.

• To create a Project Template from an open project:

1 Right-click the configuration that you want to use, and then select Save
As Template.

2 Enter a description for the template, then click Proceed. Save your
Template file.

• When you create a new project, to use a saved template:

1 Under Project configuration, check the Use template box. Click
Next.

1-24

Save Analysis Options as Project Template

2 Select . Navigate to the template that you
saved earlier, and then click Open. The new template appears in the
Custom templates folder on the Templates browser. Select the
template for use.

1-25

1 Project Configuration

Related
Examples

• “Specify Analysis Options” on page 1-21

Concepts • “Analysis Options for C”
• “Analysis Options for C++”

1-26

Specify Text Editor

Specify Text Editor
This example shows how to change the default text editor for opening source
files from the Polyspace interface. Polyspace uses WordPad as the default
editor in Windows. It uses vi as the default editor in Linux.

1 Select Options > Preferences.

2 On the Polyspace Preferences dialog box, select the Editors tab.

3 In the Text editor field, specify the path to your text editor. For example:

C:\Program Files\Windows NT\Accessories\wordpad.exe

4 To make sure that your source code opens at the correct line and column
in your text editor, specify command-line arguments for the editor using
Polyspace macros, $FILE, $LINE and $COLUMN. Once you specify the
arguments, when you right-click a check on the Results Summary pane
and select Open Source File, your source code opens at the location
of the check.

Polyspace has already specified the command-line arguments for the
following editors:

• Emacs

• Notepad++ — Windows only

• UltraEdit

• VisualStudio

• WordPad — Windows only

• gVim

If you are using one of these editors, select it from the Arguments
drop-down list. If you are using another text editor, select Custom from the
drop-down list, and enter the command-line options in the field provided.

5 Click OK.

For console-based text editors, you must create a terminal. For example,
to specify vi:

1-27

1 Project Configuration

1 In the Text Editor field, enter /usr/bin/xterm.

2 From the Arguments drop-down list, select Custom.

3 In the field to the right, enter -e /usr/bin/vi $FILE.

1-28

Define Custom Review Status

Define Custom Review Status
This example shows how to customize the statuses you assign on the Check
Review pane.

Define Custom Status

1 Select Options > Preferences.

2 Select the Review Statuses tab.

3 Enter your new status at the bottom of the dialog box, then click Add.

1-29

1 Project Configuration

The new status appears in the Status list.

4 Click OK to save your changes and close the dialog box.

1-30

Define Custom Review Status

When reviewing checks, you can select the new status from the Check
Review > Status drop-down list.

Add Justification to Existing Status

By default, a check is automatically justified if you assign the status, Justify
with annotations or No action planned. However, you can change this
default setting so that a check is justified when you assign one of the other
existing statuses.

To add justification to existing status Improve:

1 Select Options > Preferences.

2 Select the Review Statuses tab. For the Improve status, select the check
box in the Justify column. Click OK.

1-31

1 Project Configuration

If you assign the Improve status to a check on the Check Review pane,
the check gets automatically justified.

1-32

Compilation Errors

Compilation Errors
During a Polyspace Bug Finder analysis, the software first compiles the
project and looks for coding rule errors. If the files have compilation errors,
a message appears in the Output Summary pane and the offending files are
ignored during the later analysis stages.

Consequently, Bug Finder produces results for all source files that do not
have compilation errors. Files with compilation problems do not appear in
the results.

For complete analysis results, fix compilation errors before rerunning the
analysis.

1-33

1 Project Configuration

Model Synchronous Tasks
In some circumstances, you must adapt your source code to allow synchronous
tasks to be taken into account.

Suppose that an application has the following behavior:

• Once every 10 ms: void tsk_10ms(void);

• Once every 30 ms: ...

• Once every 50 ms

These tasks do not interrupt each other, do not include infinite loops, and
always return control to the calling context. For example:

void tsk_10ms(void)
{ do_things_and_exit();
/* it's important it returns control*/

}

However, if you specify each entry-point at launch using the option:

polyspace-bug-finder-no-desktop -entry-points
tsk_10ms,tsk_30ms,tsk_50ms

then the results are not valid, because each task is called only once.

To address this problem, you must specify that the tasks are purely sequential.
You can do this by writing a function to call each of the tasks in the right
sequence, and then declaring this new function as a single task entry point.

Solution 1

Write a function that calls the cyclic tasks in the right order; an exact
sequencer. This sequencer is then specified at launch time as a single task
entry point.

This solution requires knowledge of the exact sequence of events.

1-34

Model Synchronous Tasks

For example, the sequencer might be:

void one_sequential_C_function(void)
{
while (1) {
tsk_10ms();
tsk_10ms();
tsk_10ms();
tsk_30ms ();
tsk_10ms();
tsk_10ms();
tsk_50ms ();

}
}

and the associated launching command:

polyspace-bug-finder-no-desktop -entry-points
one_sequential_C_function

Solution 2

Make an upper approximation sequencer, taking into account every
possible scheduling.

This solution is less precise but quick to code, especially for complicated
scheduling:

For example, the sequencer might be:

void upper_approx_C_sequencer(void)
{
volatile int random;
while (1) {
if (random) tsk_10ms();
if (random) tsk_30ms();
if (random) tsk_50ms();
if (random) tsk_100ms();
.....

}
}

1-35

1 Project Configuration

and the associated launching command:

polyspace-bug-finder-no-desktop -entry-points
upper_approx_C_sequencer

Note If this is the only entry-point, then it can be added at the end of the
main procedure rather than specified as a task entry point.

1-36

Prepare Multitasking Code

Prepare Multitasking Code

In this section...

“Model Interruptions and Asynchronous Events and Tasks” on page 1-37

“Are Interruptions Maskable or Preemptive?” on page 1-39

“Model Shared Variables” on page 1-41

“Model Mailbox Messaging” on page 1-45

“Atomicity and Interrupted Instructions” on page 1-48

Model Interruptions and Asynchronous Events and
Tasks
You can adapt your source code to allow Polyspace software to consider both
asynchronous tasks and interruptions. For example:

void interrupt isr_1(void)
{ ... }

Without such an adaptation, interrupt service routines appear as dead code
in the results. Dead code indicates that this code is not executed and is not
taken into account, so interruptions and tasks are ignored.

The standard execution model is such that the main procedure is executed
initially. Only if the main procedure terminates and returns control (i.e. if it
is not an infinite loop and does not have red errors) do the entry points start,
with the potential starting sequences being modelled automatically. You can
adopt several different approaches to implement the required adaptations.

Solution 1: Where Interrupts (ISRs) Cannot Preempt Each Other

If the following conditions are fulfilled:

• The interrupt functions it_1 and it_2 do not interrupt each other.

• Each interrupt can be raised several times, at any time.

• The functions are returning functions, and not infinite loops.

1-37

1 Project Configuration

Then these non preemptive interruptions may be grouped into a single
function, and that function declared as an entry point.

void it_1(void);
void it_2(void);

void interruptions_and_events(void)
{ while (1) {
if (random()) it_1();
if (random()) it_2();
... }

}

The associated launching command would be:

polyspace-bug-finder-no-desktop -entry-points
interruptions_and_events

Solution 2: Where Interrupts Can Preempt Each Other

If two ISRs can each be interrupted by the other, then:

• Encapsulate each of them in a loop.

• Declare each loop as an entry point.

One approach is to replace the original file with a Polyspace version.

original_file.c
void it_1(void)
{
... return;

}

void it_2(void)
{
... return;

}

void one_task(void)
{

1-38

Prepare Multitasking Code

... return;
}

polyspace.c
void polys_it_1(void)
{
while (1)

if (random())
it_1();

}

void polys_it_2(void)
{
while (1)
if (random())
it_2();

}

void polys_one_task(void)
{
while (1)
if (random())
one_task();

}

The associated launching command would be:

polyspace-bug-finder-no-desktop -entry-points
polys_it_1,polys_it_2,polys_one_task

Are Interruptions Maskable or Preemptive?
For user interruptions, an implicit critical section is not defined: you must
write them manually.

Sometimes, an application which includes interrupts has a critical section
written into its main entry point, but shared data is still flagged as
unprotected.

1-39

1 Project Configuration

This occurs because Polyspace does not distinguish between interrupt service
routines and tasks. If you specify an interrupt to be a -entry-points entry
point, it has the same priority level as the other procedures declared as tasks
("-entry-points" option). Because Polyspace makes an upper approximation of
scheduling and interleaving, in this case, that includes the possibility that the
ISR might be interrupted by any other task. More paths are modelled than
could happen during execution, but this only means that more scenarios are
considered than could happen during “real life” execution - and the shared
data is not seen as being protected.

To address this, the interrupt must be embedded in a specific procedure that
uses the same critical section as the interrupt used in the main task. Then,
each time this function is called, the task will enter a critical section which
will model the behavior of a nonmaskable interruption.

Original files:

int shared_x ;

void my_main_task(void)
{
// ...
MASK_IT;
shared_x = 12;
UMASK_IT;
// ...

}
int shared_x ;

void interrupt my_real_it(void)
{ /* which is by specification unmaskable */
shared_x = 100;

}

Additional C files required by the analysis:

extern void my_real_it(void); // declaration required

#define MASK_IT pst_mask_it()
#define UMASK_IT pst_unmask_it()

1-40

Prepare Multitasking Code

void pst_mask_it(void); // functions to model critical sections
void pst_unmask_it(void); //

void other_task (void)
{

MASK_IT;
my_real_it();
UMASK_IT;

}

The associated launch command:

polyspace-bug-finder-no-desktop \
-D interrupt= \
-entry-points my_main_task,other_task \
-critical-section-begin "pst_mask_it:table" \
-critical-section-end "pst_unmask_it:table"

Model Shared Variables
When you launch Polyspace without options, tasks are examined as though
concurrent and without assumptions about priorities, sequence order, or
timing. Shared variables in this context are considered unprotected.

The software uses the following explicit protection mechanisms to protect
the variables:

• “Critical Sections” on page 1-41

• “Mutual Exclusion” on page 1-43

• “Semaphores” on page 1-44

• “Effects of Imprecision on Shared Variable List” on page 1-44

Critical Sections
This is the most common protection mechanism found in applications, and is
simple to represent in Polyspace software:

1-41

1 Project Configuration

• If one entry-point makes a call to a particular critical section, the other
entry-points are blocked on the "critical-section-begin" function call until
the originating entry-point calls the "critical-section-end" function.

• The code between two critical sections is not atomic.

• The code is a binary semaphore, so there is only one token per label (CS1 in
the following example). Unlike many implementations of semaphores, it is
not a decrementing counter that can keep track of a number of attempted
accesses.

Consider the following example:

Original Code

void proc1(void)
{
MASK_IT;
x = 12; // X is protected
y = 100;
UMASK_IT;

}
void proc2(void)
{
MASK_IT;
x = 11; // X is protected
UMASK_IT;
y = 101; // Y is not protected

}

File Replacing the Original Include File

void begin_cs(void);
void end_cs(void);
#define MASK_IT begin_cs()
#define UMASK_IT end_cs()

Command-Line to Launch Polyspace Analysis

polyspace-bug-finder-no-desktop \
-entry-point proc1,proc2 \
-critical-section-begin"begin_cs:label_1" \

1-42

Prepare Multitasking Code

-critical-section-end"end_cs:label_1"

Mutual Exclusion
You can implement mutual exclusion between tasks or interrupts while
preparing to launch analysis.

Suppose there are entry-points which do not overlap each other, and that
variables are shared by nature.

If entry-points are mutually exclusive, i.e. if they do not overlap in time, you
may want the analysis to take that into account. Consider the following
example:

These entry points cannot overlap:

• t1 and t3

• t2, t3 and t4

These entry-points can overlap:

• t1 and t2

• t1 and t4

Before launching, the names of mutually exclusive entry-points are placed
on a single line:

polyspace-bug-finder-no-desktop -temporal-exclusion-file myExclusions.txt
-entry-points t1,t2,t3,t4

The file myExclusions.txt is also required in the current folder. This file
contains:

t1 t3
t2 t3 t4

1-43

1 Project Configuration

Semaphores
Although you can implement the code in C, Polyspace cannot take into
account a semaphore system call. However, you can use critical sections to
model the behavior of semaphores.

Effects of Imprecision on Shared Variable List
The list of shared variables that Polyspace identifies might contain more than
the exact number of shared variables.

Note At a minimum, the list of shared variables contains the global variables
or the exact number of shared variables.

Consider the following example.

// -entry-points IT_1, IT_2
int C[1];
int D[1];
extern int random(void);
void alias(int* par)
{

int var;
var=*par;

}

void IT_1(void)
{
while (1)

{
if (random())
{

D[0]=C[0];
alias(D);

}
}

}

void IT_2(void)

1-44

Prepare Multitasking Code

{
while (1)

{
if (random())
{

C[0]=C[0]+1;
alias(C);

}
}

}

void main(void)
{

C[0]=0;
D[0]=0;

}

The variable D is not a shared variable. However, because of array
imprecision, Polyspace considers D a shared variable.

Model Mailbox Messaging
Suppose that an application has several tasks, some of which post messages
in a mailbox while other tasks read the messages asynchronously.

This communication mechanism is possible because the OS libraries provide
send and receive procedures. The source files will be unavailable because
the procedures are part of the OS libraries, but the mechanism needs to be
modelled for meaningful analysis.

By default, the analysis automatically stubs the missing OS send and receive
procedures. The stub exhibits the following behavior:

• For send(char *buffer, int length), the content of the buffer is written
only when the procedure is called.

• For receive(char *buffer, int *length), each element of the buffer
will contain the full range of values for the corresponding data type.

You can use this mechanism and other mechanisms, with different levels
of precision.

1-45

1 Project Configuration

Let Polyspace software stub
automatically

• Quick and easy to code.

• imprecise because there is not
a direct connection between a
mailbox sender and receiver. It
means that even if the sender is
only submitting data within a
small range, the full data range
for the type(s) will be used for the
receiver data

Provide a real mailbox mechanism • Costly (time consuming) to
implement.

• Can introduce errors in the stubs.

• Provides little additional benefit
when compared to the upper
approximation solution below.

Provide an upper approximation
of the mailbox

Models the mechanism so that new
read from the mailbox reads one of
the recently posted messages, but
not necessarily the last message.

• Quick and easy to code.

• gives precise results

Consider the following detailed implementation of the upper approximation
solution:

polyspace_mailboxes.h

typedef struct _r {
int length;
char content[100];

} MESSAGE;
extern MESSAGE mailbox;
void send(MESSAGE * msg);
void receive(MESSAGE *msg);

polyspace_mailboxes.c

1-46

Prepare Multitasking Code

#include "polyspace_mailboxes.h"

MESSAGE mailbox;

void send(MESSAGE * msg)
{
volatile int test;
if (test) mailbox = *msg;
// a potential write to the mailbox

}

void receive(MESSAGE *msg)
{
*msg = mailbox;

}

Original code

#include "polyspace_mailboxes.h"

void t1(void)
{
MESSAGE msg_to_send;
int i;
for (i=0; i<100; i++)
msg_to_send.content[i] = i;

msg_to_send.length = 100;
send(&msg_to_send);

}
void t2(void)
{
MESSAGE msg_to_read;
receive (&msg_to_read);

}

The analysis then proceeds on the assumption that each new read from the
mailbox reads a message, but not necessarily the last message.

The associated launching command is:

1-47

1 Project Configuration

polyspace-bug-finder-no-desktop -entry-points t1,t2

Atomicity and Interrupted Instructions
Atomic: In computer programming, atomic describes a unitary action or object
that is essentially indivisible, unchangeable, whole, and irreducible.

Atomicity: In a transaction involving two or more discrete pieces of
information, either all of the pieces are committed or none are.

Instructional decomposition

Polyspace does not take into account either CPU instruction decomposition or
timing considerations.

Polyspace assumes that instructions are not atomic except in the case of
read and write instructions. Polyspace makes an upper approximation
of scheduling and interleaving. There are more paths modelled than
could be implemented during execution, but since Polyspace analyzes every
possible path, the results are not negatively affected.

Consider a 16-bit target that can manipulate a 32-bit type (an int, for
example). In this case, the CPU needs at least two cycles to write to an integer.

Suppose that x is an integer in a multitasking system, with an initial value
of 0x0000. Now suppose 0xFF55 is written it. If the operation is not atomic
it could be interrupted by another instruction in the middle of the write
operation.

• Task 1: Writes 0xFF55 to x.

• Task 2: Interrupts task 1. Depending on the timing, the value of x could be
either 0xFF00, 0x0055 or 0xFF55.

Polyspace considers write/read instructions atomic, so task 2 can only read
0xFF55, even if X is not protected (see “Model Shared Variables” on page
1-41).

Critical sections

1-48

Prepare Multitasking Code

In terms of critical sections, Polyspace does not model the concept of atomicity.
A critical section guarantees only that once the function associated with
-critical-section-begin is called, other functions making use of the same
label are blocked. The other functions can still continue to run, even if
somewhere else in another task a critical section has been started.

Polyspace of run-time errors supposes that there is not a conflict when writing
the shared variables. Therefore, even if a shared variable is not protected,
the analysis is complete and correct.

1-49

1 Project Configuration

Priorities
Priorities are not taken into account by Polyspace. However, the timing
implications of software execution are not relevant to the analysis, which is
the primary reason for implementing software task prioritization. In addition,
priority inversion issues can mean that the software cannot assume that
priorities can protect shared variables. For that reason, Polyspace software
does not makes such assumption.

Although Polyspace does not have the capability to specify differing task
priorities, priorities are taken into account because the default behavior of
the software assumes that:

• Task entry points (as defined with the option -entry-points) start
potentially at the same time;

• The task entry points can interrupt each other in any order, in spite of
the sequence of instructions. Therefore, every possible interruption is
accounted for, in addition to some interruptions which do not actually occur.

If you have two tasks, t1 and t2, in which t1 has higher priority than t2, use
polyspace-bug-finder-no-desktop -entry-points t1,t2.

• t1 interrupts t2 at any stage of t2, which models the behavior at execution
time.

• t2 interrupts t1 at any stage of t1, which models a behavior which (ignoring
priority inversion) would take place during execution. Polyspace has made
an upper approximation of scheduling and interleaving. There are
more paths modelled than would happen in “real life”, so results are not
negatively affected.

1-50

Annotate Code for Known Defects

Annotate Code for Known Defects

How to Add Annotations
You can place comments in your code that inform Polyspace software of
known or acceptable bugs and coding rule violations. Through the use of
these comments, you can:

• Identify defects from previous analyses.

• Categorize reviewed defects.

• Highlight defects that are not significant.

During your analysis of results, you can disregard these known errors and
focus on new errors.

Annotate your code before running an analysis:

1 Open your source file using a text editor.

2 Locate the code that produces a run-time error.

3 Insert the required comment. See “Syntax for Annotations” on page 1-51.

4 Save your file.

5 Start the analysis. If your comments do not conform to the prescribed
syntax, the software produces a warning and the comments do not appear
in the Results Summary.

When the analysis is complete, open the results.

In the Classification, Status, and Comment columns, the information that
you provide within your code comments is now visible.

Syntax for Annotations
Polyspace applies the comments, which are case-insensitive, to the first
non-commented line of C code that follows the annotation.

1-51

1 Project Configuration

Note Instead of typing the full syntax of the annotation, you can copy an
annotation template from the results. See “Copy and Paste Annotations”
on page 1-58 for more information.

To apply comments to a single line of code, use the following syntax:

/* polyspace<Defect:Kind1[,Kind2] : [Classification] : [Status] >
[Additional comments] */

To apply comments to a section of code, use the following syntax:

/* polyspace:begin<Defect:Kind1[,Kind1] :
[Classification] : [Status] >
[Additional text] */

... Code section ...

/* polyspace:end<Defect:Kind1[,Kind1] : [Classification] : [Status] > */

Square brackets [] indicate optional information.

Replace Replace with

Kind1,Kind2,... Specific defect abbreviations such as MEM_LEAK,
FREED_PTR, etc.

If you want the comment to apply to all defects on
the following line, specify ALL.

Classification • Unset

• High

• Medium

• Low

• Not a defect

1-52

Annotate Code for Known Defects

Replace Replace with

Status Action for correcting the defect in your code. Possible
values are:

• Fix

• Improve

• Investigate

• Justify with annotations

• No action planned

• Restart with different options

• Other

• Undecided

Additional text Additional comments.

Syntax Examples:

Defect:

polyspace<Defect:USELESS_WRITE : Low : No Action Planned > Known issue

1-53

1 Project Configuration

Annotate Code for Rule Violations

How to Add Annotations
You can place comments in your code that inform Polyspace software of
known or acceptable bugs and coding rule violations. Through the use of
these comments, you can:

• Identify results from previous analyses.

• Categorize reviewed results.

• Highlight rule violations that are not significant.

Note Source code annotations do not apply to code comments. Therefore, the
following coding rules cannot be annotated:

• MISRA-C Rules 2.2 and 2.3

• MISRA-C++ Rule 2-7-1

• JSF++ Rules 127 and 133

During your analysis of results, you can disregard these known errors and
focus on new errors.

Annotate your code before running an analysis:

1 Open your source file using a text editor.

2 Locate the code that produces a run-time error.

3 Insert the required comment. See “Syntax for Annotations” on page 1-51.

4 Save your file.

5 Start the analysis. If your comments do not conform to the prescribed
syntax, the software produces a warning and the comments do not appear
in the Results Summary.

1-54

Annotate Code for Rule Violations

When the analysis is complete, open the results.

In the Classification, Status, and Comment columns, the information that
you provide within your code comments is now visible.

Syntax for Annotations
Polyspace applies the comments, which are case-insensitive, to the first
non-commented line of C code that follows the annotation.

Note Instead of typing the full syntax of the annotation, you can copy an
annotation template from the results. See “Copy and Paste Annotations”
on page 1-58 for more information.

To apply comments to a single line of code, use the following syntax:

/* polyspace<Rule_set:Rule1[,Rule2] : [Classification] : [Status] >
[Additional comments] */

To apply comments to a section of code, use the following syntax:

/* polyspace:begin<Rule_Set:Rule1[,Rule2] :
[Classification] : [Status] >
[Additional text] */

... Code section ...

/* polyspace:end<Rule_Set:Rule1[,Rule2] : [Classification] : [Status] > */

Square brackets [] indicate optional information.

1-55

1 Project Configuration

Replace Replace with

Rule_Set • MISRA-C

• MISRA-AC-AGC

• MISRA-CPP

• JSF

• Custom

If you want the comment to apply to all coding rule
violations on the following line, specify ALL.

Rule1,Rule2,... Rule number. For more information, see:

• “MISRA C:2004 Coding Rules”

• “MISRA® C++ Coding Rules”

• “JSF® C++ Coding Rules”

• “Custom Naming Convention Rules”

Classification • Unset

• High

• Medium

• Low

• Not a defect

Status Action for correcting the coding rule violation.
Possible values are:
• Fix

• Improve

• Investigate

• Justify with annotations

• No action planned

• Restart with different options

• Other

1-56

Annotate Code for Rule Violations

Replace Replace with

• Undecided

Additional text Additional comments.

Syntax Examples:

MISRA C rule violation:

polyspace<MISRA-C:6.3 : Low : Justify with annotations> Known issue

JSF rule violation:

polyspace<JSF:9 : Low : Justify with annotations> Known issue

1-57

1 Project Configuration

Copy and Paste Annotations
Instead of typing the full syntax of an annotation comment in your source
code, you can copy an annotation template, paste it into your source code, and
modify the template to comment the check.

To copy the justification template to the clipboard:

1 In the Results Summary pane, right–click a coding rule violation.

2 From the context menu, select Add Pre-Justification to Clipboard. The
software copies the justification string to the clipboard.

3 Open the source file containing the violations you want to justify.

4 Navigate to the code you want to comment, and paste the justification
template string on the line immediately before the line you want to
comment.

5 Modify the template text to comment the code appropriately.

6 Save the file.

1-58

Predefined Target Processor Specifications

Predefined Target Processor Specifications
Polyspace software supports many commonly used processors, as listed in the
table below. To specify one of the predefined processors, select it from the
Target processor type drop-down list.

1-59

1 Project Configuration

Predefined Target Processor Specifications

Target char short int long long
long

float double long
double

ptr sign of
char

endian align

i386 8 16 32 32 64 32 64 96 32 signed Little 32

sparc 8 16 32 32 64 32 64 128 32 signed Big 64

m68k /
ColdFire1

8 16 32 32 64 32 64 96 32 signed Big 64

powerpc 8 16 32 32 64 32 64 128 32 unsigned Big 64

c-167 8 16 16 32 32 32 64 64 16 signed Little 64

tms320c3x 32 32 32 32 64 32 32 402 32 signed Little 32

sharc21x61 32 32 32 32 64 32 32
[64]

32
[64]

32 signed Little 32

NEC-V850 8 16 32 32 32 32 32 64 32 signed Little 32
[16, 8]

hc083 8 16 16
[32]

32 32 32 32
[64]

32
[64]

164 unsigned Big 32
[16]

hc125 8 16 16
[32]

32 32 32 32
[64]

32
[64]

326 signed Big 32
[16]

mpc5xx5 8 16 32 32 64 32 32
[64]

32
[64]

32 signed Big 32
[16]

c18 8 16 16 32
[24]5

32 32 32 32 16
[24]

signed Little 8

1. The M68k family (68000, 68020, etc.) includes the “ColdFire” processor

2. Operations on long double values will be imprecise.

3. Non ANSI C specified keywords and compiler implementation-dependent pragmas and
interrupt facilities are not taken into account by this support

4. All kinds of pointers (near or far pointer) have 2 bytes (hc08) or 4 bytes (hc12) of width
physically.

5. The c18 target supports the type short long as 24-bits.

1-60

Predefined Target Processor Specifications

Predefined Target Processor Specifications (Continued)

Target char short int long long
long

float double long
double

ptr sign of
char

endian align

x86_64 8 16 32 64
[32]6

64 32 64 96 64 signed Little 64
[32]

mcpu
(Advanced)

8
[16]

8
[16]

16
[32]

32 32
[64]

32 32
[64]

32
[64]

16
[32]

signed Little 32
[16, 8]

Note The following target processors are supported only for C code analyses:
tms320c3x, sharc21x61, NEC-V850, hc08, hc12, mpc5xx, and c18.

After selecting a predefined target, you can modify some default attributes
by selecting the browse button to the right of the Target processor type
drop-down menu. The optional settings for each target are shown in [brackets]
in the table.

If your processor is not listed, you can specify a similar processor that shares
the same characteristics, or create a generic target processor.

Note If your target processor does not match the characteristics of a
processor described above, contact MathWorks® technical support for advice.

6. Use option -long-is-32bits to support Microsoft C/C++ Win64 target

1-61

1 Project Configuration

Modify Predefined Target Processor Attributes
You can modify certain attributes of the predefined target processors. If your
specific processor is not listed, you may be able to specify a similar processor
and modify its characteristics to match your processor.

Note The settings that you can modify for each target are shown in [brackets]
in the “Predefined Target Processor Specifications” on page 1-59 table.

To modify target processor attributes:

1 In the Project Manager perspective, select the Configuration > Target &
Compiler pane.

2 From the Target processor type drop-down list, select the target
processor that you want to use.

3 To the right of the Target processor type field, click Edit.

The Advanced target options dialog box opens.

1-62

Modify Predefined Target Processor Attributes

4 Modify the attributes as required.

For information on each target option, see “Generic target options”.

5 Click OK to save your changes.

1-63

1 Project Configuration

Specify Generic Target Processors

Define Generic Target
If your application is designed for a custom target processor, you can configure
many basic characteristics of the target by selecting the selecting the mcpu...
(Advanced) target, and specifying the characteristics of your processor.

To configure a generic target:

1 In the Project Manager perspective, select the Configuration > Target &
Compiler pane.

2 From the Target processor type drop-down list, select mcpu...
(Advanced).

The Generic target options dialog box opens.

3 In the Enter the target name field, enter a name, for example, MyTarget.

1-64

Specify Generic Target Processors

4 Specify the parameters for your target, such as the size of basic types, and
alignment with arrays and structures.

For example, when the alignment of basic types within an array or
structure is always 8, it implies that the storage assigned to arrays and
structures is strictly determined by the size of the individual data objects
(without fields and end padding).

Note For information on each target option, see “Generic target options”.

5 Click Save to save the generic target options and close the dialog box.

Common Generic Targets
The following tables describe the characteristics of common generic targets.

ST7 (Hiware C compiler : HiCross for ST7)

ST7 char short int long long
long

float double long
double

ptr char is endian

size 8 16 16 32 32 32 32 32 16/32 unsigned Big

alignment 8 16/8 16/8 32/16/8 32/16/8 32/16/8 32/16/8 32/16/8 32/16/8 N/A N/A

ST9 (GNU C compiler : gcc9 for ST9)

ST9 char short int long long
long

float double long
double

ptr char is endian

size 8 16 16 32 32 32 64 64 16/64 unsigned Big

alignment 8 8 8 8 8 8 8 8 8 N/A N/A

1-65

1 Project Configuration

Hitachi H8/300, H8/300L

Hitachi
H8/300,
H8/300L

char short int long long
long

float double long
double

ptr char is endian

size 8 16 16/32 32 64 32 654 64 16 unsigned Big

alignment 8 16 16 16 16 16 16 16 16 N/A N/A

Hitachi H8/300H, H8S, H8C, H8/Tiny

Hitachi
H8/300H,
H8S,
H8C,
H8/Tiny

char short int long long
long

float double long
double

ptr char is endian

size 8 16 16/
32

32 64 32 64 64 32 unsigned Big

alignment 8 16 32/
16

32/16 32/16 32/16 32/16 32/16 32/16 N/A N/A

View or Modify Existing Generic Targets
To view or modify generic targets that you previously created:

1 In the Project Manager perspective, select the Configuration > Target &
Compiler pane.

2 From the Target processor type drop-down list, select your target, for
example, myTarget.

3 Click Edit. The Generic target options dialog box opens, displaying your
target attributes.

1-66

Specify Generic Target Processors

4 If required, specify new attributes for your target. Then click Save.

5 Otherwise, click Cancel.

Delete Generic Target
To delete a generic target:

1 In the Project Manager perspective, select the Configuration > Target &
Compiler pane.

2 From the Target processor type drop-down list, select the target that
you want to remove, for example, myTarget.

1-67

1 Project Configuration

3 Click Remove. The software removes the target from the list.

1-68

Compile Operating System-Dependent Code

Compile Operating System-Dependent Code
This section describes the options required to compile and analyze code
designed to run on specific operating systems. It contains the following:

In this section...

“Predefined Compilation Flags for C Code” on page 1-69

“Predefined Compilation Flags for C++ Code” on page 1-71

“My Target Application Runs on Linux” on page 1-73

“My Target Application Runs on Solaris” on page 1-74

“My Target Application Runs on Vxworks” on page 1-74

“My Target Application Does Not Run on Linux, vxworks nor Solaris” on
page 1-75

Predefined Compilation Flags for C Code
These flags concern the predefined OS-target options: no-predefined-OS,
linux, vxworks, Solaris and visual (-OS-target option).

OS-target Compilation flags -include file and content

no predefined OS -D__STDC__

visual -D__STDC__ -include
<product_dir>/cinclude/pst-visual.h

vxworks -D__STDC__
-DANSI_PROTOTYPES
-DSTATIC=
-DCONST=const
-D__GNUC__=2
-Dunix
-D__unix
-D__unix__
-Dsparc
-D__sparc
-D__sparc__
-Dsun

-include
<product_dir>/cinclude/pst-vxworks.h

1-69

1 Project Configuration

OS-target Compilation flags -include file and content

-D__sun
-D__sun__
-D__svr4__
-D__SVR4

linux -D__STDC__
-D__GNUC__=2
-D__GNUC_MINOR__=6
-D__GNUC__=2
-D__GNUC_MINOR__=6
-D__ELF__
-Dunix
-D__unix
-D__unix__
-Dlinux
-D__linux
-D__linux__
-Di386
-D__i386
-D__i386__
-Di686
-D__i686
-D__i686__
-Dpentiumpro
-D__pentiumpro
-D__pentiumpro__

<product_dir>/cinclude/pst-linux.h

Solaris -D__STDC__
-D__GNUC__=2
-D__GNUC_MINOR__=8
-D__GNUC__=2
-D__GNUC_MINOR__=8
-D__GCC_NEW_VARARGS__
-Dunix
-D__unix
-D__unix__
-Dsparc
-D__sparc
-D__sparc__

No -include file mentioned

1-70

Compile Operating System-Dependent Code

OS-target Compilation flags -include file and content

-Dsun
-D__sun
-D__sun__
-D__svr4__
-D__SVR4

Note The use of the OS-target option is entirely equivalent to the following
alternative approaches.

• Setting the same -D flags manually, or

• Using the -include option on a copied and modified pst-OS-target.h file

Predefined Compilation Flags for C++ Code
The following table shown for each OS-target, the list of compilation flags
defined by default, including pre-include header file (see also -include):

-OS-target Compilation flags -include file Minimum set of options

Linux -D__SIZE_TYPE__=unsigned
-D__PTRDIFF_TYPE__=int
-D__inline__=inline
-D__signed__=signed
-D__gnuc_va_list=va_list
-D__STL_CLASS_PARTIAL_
SPECIALIZATION
-D__GNU_SOURCE
-D__STDC__ -D__ELF__
-Dunix -D__unix
-D__unix__ -Dlinux
-D__linux -D__linux__
-Di386 -D__i386
-D__i386__ -Di686
-D__i686 -D__i686__
-Dpentiumpro

<product_dir>/
cinclude/
pst-linux.h

polyspace-[desktop-]cpp
-OS-target Linux \

-I <polyspace_install>/include/
include-linux \

-I <product_dir>/include/
include-linux/next Where
the Polyspace product has
been installed in the folder
<polyspace_install>

1-71

1 Project Configuration

-OS-target Compilation flags -include file Minimum set of options

-D__pentiumpro
-D__pentiumpro__

vxWorks -D__SIZE_TYPE__=unsigned
-D__PTRDIFF_TYPE__=int
-D__inline__=inline
-D__signed__=signed
-D__gnuc_va_list=va_list
-D__STL_CLASS_PARTIAL_
SPECIALIZATION
-DANSI_PROTOTYPES
-DSTATIC=
-DCONST=const
-D__STDC
-D__GNU_SOURCE
-Dunix
-D__unix
-D__unux__
-Dsparc
-D__sparc
-D__sparc__
-Dsun
-D__sun
-D__sun__
-D__svr4
-D__SVR4

<product_dir>/
cinclude/
pstvxworks. h

polyspace-[desktop-]cpp
\ -OS-target vxworks
\ -I /your_path_to/
Vxworks_include_folders

visual
/visual6

-D__SIZE_TYPE__=unsigned
-D__PTRDIFF_TYPE__=int
-D__STRICT_ANSI__
-D__inline__=inline
-D__signed__=signed
-D__gnuc_va_list=va_list
-D_POSIX_SOURCE
-D__STL_CLASS_PARTIAL_
SPECIALIZATION

<product_dir>/
cinclude/
pstvisual. h

1-72

Compile Operating System-Dependent Code

-OS-target Compilation flags -include file Minimum set of options

Solaris -D__SIZE_TYPE__=unsigned
-D__PTRDIFF_TYPE__=int
-D__inline__=inline
-D__signed__=signed
-D__gnuc_va_list=va_list
-D__STL_CLASS_PARTIAL_
SPECIALIZATION
-D__GNU_SOURCE
-D__STDC
-D__GCC_NEW_VARARGS__
-Dunix
-D__unix
-D__unux__
-Dsparc
-D__sparc
-D__sparc__
-Dsun
-D__sun
-D__sun__
-D__svr4
-D__SVR4

If Polyspace runs on a Linux
machine:

polyspace-bug-finder-no-desktop
\
-OS-target Solaris \
-I
/your_path_to_solaris_include

If Polyspace runs on a Solaris
machine:

polyspace-bug-finder-no-desktop
\
-OS-target Solaris \
-I /usr/include

no-
predefined-
OS

-D__SIZE_TYPE__=unsigned
-D__PTRDIFF_TYPE__=int
-D__STRICT_ANSI__
-D__inline__=inline
-D__signed__=signed
-D__gnuc_va_list=va_list
-D_POSIX_SOURCE
-D__STL_CLASS_PARTIAL_
SPECIALIZATION

polyspace-bug-finder-no-desktop
\
-OS-target no-predefined-OS \
-I /your_path_to/
MyTarget_include_folders

Note This list of compiler flags is written in every log file.

My Target Application Runs on Linux
The minimum set of options is as follows:

1-73

1 Project Configuration

polyspace-bug-finder-no-desktop \
-OS-target Linux \
-I Polyspace_Install/polyspace/verifier/cxx/include/include-libc \

...

where the Polyspace product has been installed in the folder
Polyspace_Install.

If your target application runs on Linux but you are launching your analysis
from Windows, the minimum set of options is as follows:

polyspace-bug-finder-no-desktop \
-OS-target Linux \
-I Polyspace_Install\polyspace\verifier\cxx\include\include-libc \

...

where the Polyspace product has been installed in the folder
Polyspace_Install.

My Target Application Runs on Solaris
If Polyspace software runs on a Linux machine:

polyspace-bug-finder-no-desktop \
-OS-target Solaris \
-I /your_path_to_solaris_include

If Polyspace software runs on a Solaris™ machine:

polyspace-bug-finder-no-desktop \
-OS-target Solaris \
-I /usr/include

My Target Application Runs on Vxworks
If Polyspace software runs on either a Solaris or a Linux machine:

polyspace-bug-finder-no-desktop \
-OS-target vxworks \
-I /your_path_to/Vxworks_include_folders

1-74

Compile Operating System-Dependent Code

My Target Application Does Not Run on Linux,
vxworks nor Solaris
If Polyspace software does not run on either a Solaris or a Linux machine:

polyspace-bug-finder-no-desktop \
-OS-target no-predefined-OS \
-I /your_path_to/MyTarget_include_folders

1-75

1 Project Configuration

Address Alignment
Polyspace software handles address alignment by calculating sizeof and
alignments. This approach takes into account 3 constraints implied by the
ANSI standard which ensure that:

• that global sizeof and offsetof fields are optimum (i.e. as short as
possible);

• the alignment of addressable units is respected;

• global alignment is respected.

Consider the example:

struct foo {char a; int b;}

• Each field must be aligned; that is, the starting offset of a field must be
a multiple of its own size7

• So in the example, char a begins at offset 0 and its size is 8 bits. int b
cannot begin at 8 (the end of the previous field) because the starting offset
must be a multiple of its own size (32 bits). Consequently, int b begins at
offset=32. The size of the struct foo before global alignment is therefore
64 bits.

• The global alignment of a structure is the maximum of the individual
alignments of each of its fields;

• In the example, global_alignment = max (alignment char a,
alignment int b) = max (8, 32) = 32

• The size of a struct must be a multiple of its global alignment. In our case,
b begins at 32 and is 32 long, and the size of the struct (64) is a multiple of
the global_alignment (32), so sizeof is not adjusted.

7. except in the cases of “double” and “long” on some targets.

1-76

Ignore or Replace Keywords Before Compilation

Ignore or Replace Keywords Before Compilation
You can ignore noncompliant keywords, for example, far or 0x, which precede
an absolute address. The template myTpl.pl (listed below) allows you to
ignore these keywords:

1 Save the listed template as C:\Polyspace\myTpl.pl.

2 Select the Configuration > Target & Compiler > Environment
Settings pane.

3 To the right of the Command/script to apply to preprocessed files
field, click on the file icon.

4 Use the Open File dialog box to navigate to C:\Polyspace.

5 In the File name field, enter myTpl.pl.

6 Click Open. You see C:\Polyspace\myTpl.pl in the Command/script to
apply to preprocessed files field.

For more information, see .

Content of myTpl.pl file

#!/usr/bin/perl

##
Post Processing template script
#
##
Usage from Project Manager GUI:
#
1) Linux: /usr/bin/perl PostProcessingTemplate.pl
2) Windows: Polyspace_Install\sys\perl\win32\bin\perl.exe <pathtoscript>\
PostProcessingTemplate.pl
#
##

$version = 0.1;

1-77

1 Project Configuration

$INFILE = STDIN;
$OUTFILE = STDOUT;

while (<$INFILE>)
{

Remove far keyword
s/far//;

Remove "@ 0xFE1" address constructs
s/\@\s0x[A-F0-9]*//g;

Remove "@0xFE1" address constructs
s/\@0x[A-F0-9]*//g;

Remove "@ ((unsigned)&LATD*8)+2" type constructs
s/\@\s\(\(unsigned\)\&[A-Z0-9]+*8\)\+\d//g;

Convert current line to lower case
$_ =~ tr/A-Z/a-z/;

Print the current processed line
print $OUTFILE $_;

}

Perl Regular Expression Summary

###
Metacharacter What it matches
###
Single Characters
. Any character except newline
[a-z0-9] Any single character in the set
[^a-z0-9] Any character not in set
\d A digit same as
\D A non digit same as [^0-9]
\w An Alphanumeric (word) character
\W Non Alphanumeric (non-word) character
#

1-78

Ignore or Replace Keywords Before Compilation

Whitespace Characters
\s Whitespace character
\S Non-whitespace character
\n newline
\r return
\t tab
\f formfeed
\b backspace
#
Anchored Characters
\B word boundary when no inside []
\B non-word boundary
^ Matches to beginning of line
$ Matches to end of line
#
Repeated Characters
x? 0 or 1 occurence of x
x* 0 or more x's
x+ 1 or more x's
x{m,n} Matches at least m x's and no more than n x's
abc Exactly "abc"
to|be|great One of "to", "be" or "great"
#
Remembered Characters
(string) Used for back referencing see below
\1 or $1 First set of parentheses
\2 or $2 First second of parentheses
\3 or $3 First third of parentheses
##
Back referencing
#
e.g. swap first two words around on a line
red cat -> cat red
s/(\w+) (\w+)/$2 $1/;
#
##

1-79

1 Project Configuration

Analyze Keil or IAR Dialects
Typical embedded control applications frequently read and write port data,
set timer registers and read input captures. To deal with this without using
assembly language, some microprocessor compilers have specified special
data types like sfrand sbit. Typical declarations are:

sfr A0 = 0x80;
sfr A1 = 0x81;
sfr ADCUP = 0xDE;
sbit EI = 0x80;

These declarations reside in header files such as regxx.h for the basic 80Cxxx
micro processor. The definition of sfr in these header files customizes the
compiler to the target processor.

When accessing a register or a port, using sfr data is then simple, but is
not part of standard ANSI C:

int status,P0;

void main (void) {
ADCUP = 0x08; /* Write data to register */
A1 = 0xFF; /* Write data to Port */
status = P0; /* Read data from Port */
EI = 1; /* Set a bit (enable interrupts) */

}

You can analyze this type of code using the Dialect (-dialect) option . This
option allows the software to support the Keil or IAR C language extensions
even if some structures, keywords, and syntax are not ANSI standard. The
following tables summarize what is supported when analyzing code that is
associated with the Keil or IAR dialects.

The following table summarizes the supported Keil C language extensions:

1-80

Analyze Keil or IAR Dialects

Example: -dialect keil -sfr-types sfr=8

Type/Language Description Example Restrictions

Type bit • An expression to type
bit gives values in
range [0,1].

• Converting an
expression in the
type, gives 1 if it is
not equal to 0, else
0. This behavior is
similar to c++ bool
type.

bit x = 0, y = 1,
z = 2;

assert(x == 0);
assert(y == 1);
assert(z == 1);
assert(sizeof(bit)
== sizeof(int));

pointers to bits and
arrays of bits are
not allowed

Type sfr • The -sfr-types option
defines unsigned
types name and size
in bits.

• The behavior of
a variable follows
a variable of type
integral.

• A variable which
overlaps another one
(in term of address)
will be considered as
volatile.

sfr x = 0xf0; //
declaration of
variable x at
address 0xF0
sfr16 y = 0x4EEF;

For this example, options
need to be:

-dialect keil
-sfr-types sfr=8, \

sfr16=16

sfr and sbit types
are only allowed
in declarations of
external global
variables.

1-81

1 Project Configuration

Example: -dialect keil -sfr-types sfr=8 (Continued)

Type/Language Description Example Restrictions

Type sbit • Each read/write
access of a variable is
replaced by an access
of the corresponding
sfr variable access.

• Only external global
variables can be
mapped with a sbit
variable.

• Allowed expressions
are integer variables,
cells of array of int
and struct/union
integral fields.

• a variable can also
be declared as extern
bit in an another file.

sfr x = 0xF0;
sbit x1 = x ^ 1; // 1st bit of x
sbit x2 = 0xF0 ^ 2; // 2nd bit of x
sbit x3 = 0xF3; // 3rd bit of x
sbit y0 = t[3] ^ 1;

/* file1.c */
sbit x = P0 ^ 1;
/* file2.c */
extern bit x;
x = 1; // set the 1st bit of P0 to 1

Absolute variable
location

Allowed constants are
integers, strings and
identifiers.

int var _at_ 0xF0
int x @ 0xFE ;
static const
int y @ 0xA0 = 3;

Absolute variable
locations are
ignored (even if
declared with a
#pragma location).

1-82

Analyze Keil or IAR Dialects

Example: -dialect keil -sfr-types sfr=8 (Continued)

Type/Language Description Example Restrictions

Interrupt
functions

A warnings in the
log file is displayed
when an interrupt
function has been
found: "interrupt
handler detected :
<name>" or "task
entry point detected :
<name>"

void foo1 (void)
interrupt XX = YY
using 99 { }
void foo2 (void) _
task_ 99 _priority_
2 { }

Entry points and
interrupts are not
taken into account
as -entry-points.

Keywords ignored alien, bdata, far, idata, ebdata, huge, sdata, small, compact, large,
reentrant. Defining -D __C51__, keywords large code, data, xdata, pdata
and xhuge are ignored.

The following table summarize the IAR dialect:

Example: -dialect iar -sfr-types sfr=8

Type/Language Description Example Restrictions

Type bit • An expression to type
bit gives values in
range [0,1].

• Converting an
expression in the
type, gives 1 if it is
not equal to 0, else
0. This behavior is
similar to c++ bool
type.

• If initialized with
values 0 or 1, a
variable of type bit
is a simple variable
(like a c++ bool).

union {
int v;
struct {

int z;
} y;

} s;

void f(void) {
bit y1 = s.y.z . 2;
bit x4 = x.4;
bit x5 = 0xF0 . 5;
y1 = 1;

// 2nd bit of s.y.z
// is set to 1

};

pointers to bits and
arrays of bits are
not allowed

1-83

1 Project Configuration

Example: -dialect iar -sfr-types sfr=8 (Continued)

Type/Language Description Example Restrictions

• A variable of type
bit is a register bit
variable (mapped
with a bit or a sfr
type)

Type sfr • The -sfr-types option
defines unsigned
types name and size.

• The behavior of
a variable follows
a variable of type
integral.

• A variable which
overlaps another one
(in term of address)
will be considered as
volatile.

sfr x = 0xf0; //
declaration of
variable x at
address 0xF0

sfr and sbit types
are only allowed
in declarations of
external global
variables.

Individual bit
access

• Individual bit
can be accessed
without using sbit/bit
variables.

• Type is allowed for
integer variables,
cells of integer array,
and struct/union
integral fields.

int x[3], y;
x[2].2 = x[0].3 + y.1;

Absolute variable
location

Allowed constants are
integers, strings and
identifiers.

int var @ 0xF0;
int xx @ 0xFE ;
static const int y \
@0xA0 = 3;

Absolute variable
locations are
ignored (even if
declared with a
#pragma location).

1-84

Analyze Keil or IAR Dialects

Example: -dialect iar -sfr-types sfr=8 (Continued)

Type/Language Description Example Restrictions

Interrupt
functions

• A warning is
displayed in the
log file when an
interrupt function
has been found:
"interrupt handler
detected : funcname"

• A monitor function
is a function that
disables interrupts
while it is executing,
and then restores the
previous interrupt
state at function exit.

interrupt [1] \
using [99] void \
foo1(void) { ... };

monitor [3] void \
foo2(void) { ... };

Entry points and
interrupts are not
taken into account
as -entry-points.

Keywords ignored saddr, reentrant, reentrant_idata, non_banked, plm, bdata,
idata, pdata, code, data, xdata, xhuge, interrupt, __interrupt
and __intrinsic

Unnamed
struct/union

• Fields of
unions/structs
without a tag or a
name can be accessed
without naming their
parent struct.

• Option
-allow-unnamed-fields
need to be used to
allow anonymous
struct fields.

• On a conflict
between a field
of an anonymous
struct with other
identifiers:

union { int x; };
union { int y; struct { int
z; }; } @ 0xF0;

1-85

1 Project Configuration

Example: -dialect iar -sfr-types sfr=8 (Continued)

Type/Language Description Example Restrictions

- with a variable
name, field name
is hidden

- with a field
of another
anonymous struct
at different scope,
closer scope is
chosen

- with a field
of another
anonymous struct
at same scope: an
error "anonymous
struct field name
<name> conflict“
is displayed in the
log file.

no_init attribute • a global variable
declared with this
attribute is handled
like an external
variable.

• It is handled like a
type qualifier.

no_init int x;
no_init union
{ int y; } @ 0xFE;

The #pragma
no_init does not
affect the code.

The option -sfr-types defines the size of a sfr type for the Keil or IAR
dialect.

The syntax for an sfr element in the list is type-name=typesize.

For example:

1-86

Analyze Keil or IAR Dialects

-sfr-types sfr=8,sfr16=16

defines two sfr types: sfr with a size of 8 bits, and sfr16 with a size of
16-bits. A value type-name must be given only once. 8, 16 and 32 are the
only supported values for type-size.

Note As soon as an sfr type is used in the code, you must specify its name
and size, even if it is the keyword sfr.

Note Many IAR and Keil compilers currently exist that are associated to
specific targets. It is difficult to maintain a complete list of those supported.

1-87

1 Project Configuration

Gather Compilation Options Efficiently
The code is often tuned for the target (as discussed in “Analyze Keil or IAR
Dialects” on page 1-80). Rather than applying minor changes to the code,
create a single polyspace.h file which contains target specific functions and
options. The -include option can then be used to force the inclusion of the
polyspace.h file in the source files.

Where there are missing prototypes or conflicts in variable definition, writing
the expected definition or prototype within such a header file will yield
several advantages.

Direct benefits:

• The error detection is much faster since it will be detected during
compilation rather than in the link or subsequent phases.

• The position of the error will be identified more precisely.

• Original source files will not need to be modified.

Indirect benefits:

• The file is automatically included as the very first file in the original .c files.

• The file can contain much more powerful macro definitions than simple
-D options.

• The file is reusable for other projects developed under the same
environment.

Example

This is an example of a file that can be used with the -include option.

// The file may include (say) a standard include file implicitly
// included by the cross compiler

#include <stdlib.h>
#include "another_file.h"

// Generic definitions, reusable from one project to another

1-88

Gather Compilation Options Efficiently

#define far
#define at(x)

// A prototype may be positioned here to aid in the solution of
// a link phase conflict between
// declaration and definition. This will allow detection of the
// same error at compilation time instead of at link time.
// Leads to:
// - earlier detection
// - precise localisation of conflict at compilation time
void f(int);

// The same also applies to variables.
extern int x;

// Standard library stubs can be avoided,
// and OS standard prototypes redefined.

#define POLYSPACE_NO_STANDARD_STUBS // use this flag to prevent the
//automatic stubbing of std functions

#define __polyspace_no_sscanf
#define __polyspace_no_fgetc
void sscanf(int, char, char, char, char, char);
void fgetc(void);

1-89

1 Project Configuration

Specify Data Ranges for Global Variables

In this section...

“Overview of Data Range Specifications (DRS)” on page 1-90

“Specify Data Ranges Using DRS Template” on page 1-90

“Remove Non Applicable Entries from DRS File” on page 1-92

“DRS Configuration Settings” on page 1-93

“Specify Data Ranges Using Existing DRS Configuration” on page 1-96

“Edit Existing DRS Configuration” on page 1-97

“XML Format of DRS File” on page 1-98

“Specify Data Ranges Using Text Files” on page 1-104

Overview of Data Range Specifications (DRS)
By default, Polyspace software assumes that all data inputs are set to their
full range. Therefore, nearly any operation on these inputs could produce
an overflow.

The Polyspace Data Range Specifications (DRS) feature allows you to perform
a contextual analysis, analyzing the code works under normal working
conditions. Using DRS, you set constraints on global variables, and analyze
the code within these ranges. This can substantially reduce the number of
false positives in the results.

Specify Data Ranges Using DRS Template
To use the DRS feature, you must provide a list of variables and their
associated data ranges.

Polyspace software can analyze the files in your project, and generate a DRS
template containing all the global variables, user-defined functions, and stub
functions. You can then modify this template to set data ranges. In Polyspace
Bug Finder, you can specify data ranges for global variables. In Polyspace
Code Prover, you can specify data ranges for global variables, user-defined
functions, and stub functions.

1-90

Specify Data Ranges for Global Variables

To use a DRS template to set data ranges for global variables:

1 Open the project for which you want to set data ranges.

2 Check that the project contains the source files and include folders that you
want to analyze, and specifies the configuration options that you want to
use. The software generates a DRS template after compiling the code.

3 In the Project Manager perspective, select the Configuration > Inputs &
Stubbing node.

4 To the right of the Variable/function range setup field, click the Edit
button.

The Polyspace DRS Configuration dialog box opens.

5 On the toolbar, click Generate. The software compiles
the project and generates a DRS template, for example,
Bug_Finder_Example-with-MISRA-checker_drs_template.xml. You can
view the DRS values through the Polyspace DRS Configuration dialog box.

1-91

1 Project Configuration

6 Specify the data ranges for global variables. For more information, see
“DRS Configuration Settings” on page 1-93.

7 To save your DRS configuration file, click (Save DRS).

To save your DRS configuration file to a location that you specify, click

(Save DRS as).

8 If you change your source code, click Update to generate an updated DRS
configuration file. As a result of the source code changes, the updated file
might contain entries that no longer apply to your code. You can remove
these entries from the file. See “Remove Non Applicable Entries from DRS
File” on page 1-92.

9 Click OK to close the Polyspace DRS Configuration dialog box. The
Variable/function range setup field now contains the name of the DRS
configuration file. The software uses this DRS configuration file the next
time you start a verification.

10 Select File > Save Project to save your project settings.

Remove Non Applicable Entries from DRS File
If you change your source code, you must update your DRS configuration file.
From the Polyspace DRS Configuration dialog box, click Update. The
software updates the file, placing DRS entries that no longer apply to your
code under the Non Applicable node.

You can remove:

• Entries that do not apply:

1 Right-click Non Applicable.

2 From the context menu, select Remove This Node.

• Entries corresponding to a subnode:

1 Right-click the subnode, for example, Non_Infinite_loop().

2 From the context menu, select Remove This Node.

1-92

Specify Data Ranges for Global Variables

DRS Configuration Settings
The Polyspace DRS Configuration dialog box allows you to specify data
ranges for global variables, user-defined functions, and stub functions in
your project.

Column Settings

Name Displays the list of variables and functions in your
Project for which you can specify data ranges. This
Column displays three expandable menu items:

• Globals – Displays a list of global variables in the
Project.

• User defined functions – Displays a list of
user-defined functions in the Project. Expand a
function name to see a list of the input arguments for
which you can specify a data range.

• Stubbed functions – Displays a list of stub functions
in the Project. Expand a function name to see a list
of the return values for which you can specify a data
range.

File Displays the name of the source file containing the
variable or function.

Attributes Displays information about the variable or function. For
example, static variables display static.

Type Displays the variable type.

Main
Generator
Called

Applicable only for user-defined functions. Specifies
whether the main generator calls the function:

• MAIN GENERATOR – Main generator may call
this function, depending on the value of
the -functions-called-in-loop (C) or
-main-generator-calls (C++) parameter.

• NO – Main generator will not call this function.

• YES – Main generator will call this function.

1-93

1 Project Configuration

Column Settings

Init Mode Specifies how the software assigns a range to the
variable:

• MAIN GENERATOR – Variable range is assigned
depending on the settings of the main generator
options -variables-written-before-loop and
-no-def-init-glob.
(For C++, the options are
-main-generator-writes-variables, and
-no-def-init-glob.)

• IGNORE – Variable is not assigned to any range, even if
a range is specified.

• INIT – Variable is assigned to the specified range only
at initialization, and keeps the range until first write.

• PERMANENT – Variable is permanently assigned to the
specified range. If the variable is assigned outside this
range during the program, no warning is provided.
Use the globalassert mode if you need a warning.

User-defined functions support only INIT mode.

Stub functions support only PERMANENT mode.

For C verifications, global pointers support MAIN
GENERATOR, IGNORE, or INIT mode.

• MAIN GENERATOR – Pointer follows the options of the
main generator.

• IGNORE – Pointer is not initialized

• INIT – Specify if the pointer is NULL, and how the
pointed object is allocated (Initialize Pointer and
Init Allocated options).

1-94

Specify Data Ranges for Global Variables

Column Settings

Init Range Specifies the minimum and maximum values for the
variable. You can use the keywords min and max to
denote the minimum and maximum values of the
variable type. For example, for the type long, min and
max correspond to -2^31 and 2^31-1 respectively.

You can also use hexadecimal values. For example:
0x12..0x100

Initialize
Pointer

Applicable only to pointers. Enabled only when you
specify Init Mode:INIT.

Specifies whether the pointer should be NULL:

• May-be NULL – The pointer could potentially be a
NULL pointer (or not).

• Not Null – The pointer is never initialized as a null
pointer.

• Null – The pointer is initialized as NULL.

Note Not applicable for C++ projects.

Init Allocated Applicable only to pointers. Enabled only when you
specify Init Mode:INIT.

Specifies how the pointed object is allocated:

• MAIN GENERATOR – The pointed object is allocated by
the main generator.

• None – Pointed object is not written.

• SINGLE – Write the pointed object or the first element
of an array. (This setting is useful for stubbed function
parameters.)

• MULTI – All objects (or array elements) are initialized.

1-95

1 Project Configuration

Column Settings

Note Not applicable for C++ projects.

Allocated
Objects

Applicable only to pointers.Specifies how many objects
are pointed to by the pointer (the pointed object is
considered as an array).

Note: The Init Allocated parameter specifies how many
allocated objects are actually initialized.

Note Not applicable for C++ projects.

Global Assert Specifies whether to perform an assert check on
the variable at global initialization, and after each
assignment.

Global Assert
Range

Specifies the minimum and maximum values for the
range you want to check.

Comment Remarks that you enter, for example, justification for
your DRS values.

Specify Data Ranges Using Existing DRS Configuration
Once you have created a DRS configuration file for a project, you can reuse
the data ranges for subsequent verifications.

To specify an existing DRS configuration file for your project:

1 Open the project for which you want to set data ranges.

2 In the Project Manager perspective, select the Configuration > Inputs &
Stubbing node.

3 To the right of the Variable/function range setup field, click the Edit
button.

1-96

Specify Data Ranges for Global Variables

The Polyspace DRS Configuration dialog box opens.

4 On the toolbar, click the button .

5 In the Load a DRS file dialog box, navigate to the folder that contains the
required DRS configuration file, and select the file. Then click Open. The
Load a DRS file dialog box closes.

6 In the Polyspace DRS Configuration dialog box, click OK.

7 Select File > Save Project to save your project settings, including the
DRS file location.

The software uses the specified DRS configuration file the next time you
start an analysis.

Edit Existing DRS Configuration
Once you have created a DRS configuration file for your project, you can edit
the configuration using the Polyspace DRS Configuration dialog box.

To edit an existing DRS configuration:

1 Open the project.

2 In the Project Manager perspective, select the Configuration > Inputs &
Stubbing node.

3 To the right of the Variable/function range setup field, click the Edit
button.

1-97

1 Project Configuration

The Polyspace DRS Configuration dialog box opens.

4 Specify the data ranges for global variables.

5 To save your DRS configuration file, click (Save DRS),

6 Click OK, which closes the Polyspace DRS Configuration dialog box.

XML Format of DRS File

Syntax Description — XML Elements
The DRS file contains the following XML elements:

• <global> element — Declares the global scope, and is the root element
of the XML file.

• <file> element — Declares a file scope. Must be enclosed in the <global>
element. May enclose any variable or function declaration. Static variables
must be enclosed in a file element to avoid conflicts.

• <scalar> element— Declares an integer or a floating point variable. May
be enclosed in any recognized element, but cannot enclose any element.
Sets init/permanent/global asserts on variables.

• <pointer> element — Declares a pointer variable. May enclose any other
variable declarations (including itself), to define the pointed objects.
Specifies what value is written into pointer (NULL or not), how many
objects are allocated and how the pointed objects are initialized.

• <array> element — Declares an array variable. May enclose any other
variable definition (including itself), to define the members of the array.

1-98

Specify Data Ranges for Global Variables

• <struct> element — Declares a structure variable or object (instance of
class). May enclose any other variable definition (including itself), to define
the fields of the structure.

• <function> element — Declares a function or class method scope. May
enclose any variable definition, to define the arguments and the return
value of the function. Arguments should be named arg1, arg2, …argn
and the return value should be called return.

The following notes apply to specific fields in each XML element:

• (*) — Fields used only by the GUI. These fields are not mandatory for
verification to accept the ranges. The field line contains the line number
where the variable is declared in the source code, complete_type contains
a string with the complete variable type, and base_type is used by the GUI
to compute the min and max values. The field comment is used to add
information about any node.

• (**) — The field name is mandatory for scope elements <file> and
<function> (except for function pointers). For other elements, the name
must be specified when declaring a root symbol or a struct field.

• (***) — If more than one attribute applies to the variable, the attributes
must be separated by a space. Only the static attribute is mandatory,
to avoid conflicts between static variables having the same name. An
attribute can be defined multiple times without impact.

• (****) — This element is used only by the GUI, to determine which init
modes are allowed for the current element (according to its type). The
value works as a mask, where the following values are added to specify
which modes are allowed:

- 1: The mode “NO” is allowed.

- 2 : The mode “INIT” is allowed.

- 4: The mode “PERMANENT” is allowed.

- 8: The mode “MAIN_GENERATOR” is allowed.

For example, the value “10” means that modes “INIT” and
“MAIN_GENERATOR” are allowed. To see how this value is computed, refer to
“Valid Modes and Default Values” on page 1-103.

1-99

1 Project Configuration

• (*****) — A sub-element of a pointer (i.e. a pointed object) will be taken
into account only if init_pointed is equal to SINGLE or MULTI.

<file> Element.

Field Syntax

name filepath_or_filename

comment string

<scalar> Element.

Field Syntax

name (**) name

line (*) line

base_type (*) intx
uintx
floatx

Attributes (***) volatile
extern
static
const

complete_type (*) type

init_mode MAIN_GENERATOR
IGNORE
INIT
PERMANENT
disabled
unsupported

init_modes_allowed (*) single value (****)

init_range range
disabled
unsupported

1-100

Specify Data Ranges for Global Variables

Field Syntax

global_ assert YES
NO
disabled
unsupported

assert_range range
disabled
unsupported

comment(*) string

<pointer> Element.

Field Syntax

Name (**) name

line (*) line

Attributes (***) volatile
extern
static
const

complete_type (*) type

init_mode MAIN_GENERATOR
IGNORE
INIT
PERMANENT
disabled
unsupported

init_modes_allowed (*) single value (****)

initialize_ pointer May be:
NULL
Not NULL
NULL

number_ allocated single value
disabled
unsupported

1-101

1 Project Configuration

Field Syntax

init_pointed MAIN_GENERATOR
NONE
SINGLE
MULTI
disabled

comment string

<array> and <struct> Elements.

Field Syntax

Name (**) name

line (*) line

complete_type (*) type

attributes (***) volatile
extern
static
const

comment string

<function> Element.

Field Syntax

Name (**) name

line (*) line

main_generator_called MAIN_GENERATOR
YES
NO
disabled

1-102

Specify Data Ranges for Global Variables

Field Syntax

attributes (***) static
extern
unused

comment string

Valid Modes and Default Values
Scope Type Init modes Gassert

mode
Initialize
pointer

Init
allocated

Default

Unqualified/
static/
const
scalar

MAIN_
GENERATOR
IGNORE
INIT
PERMANENT

YES
NO

Main
generator
dependant

Volatile scalar PERMANENT disabled PERMANENT
min..max

Base type

Extern scalar INIT PERMANENT YES
NO

INIT
min..max

Struct Struct field Refer to field type

Global
variables

Array Array element Refer to element type

1-103

1 Project Configuration

Scope Type Init modes Gassert
mode

Initialize
pointer

Init
allocated

Default

Unqualified/
static/
const
scalar

MAIN_
GENERATOR
IGNORE
INIT

May be
NULL
Not
NULL
NULL

NONE
SINGLE
MULTI

Main
generator
dependant

Volatile pointer un-
supported

un-
supported

un-
supported

Extern pointer IGNORE
INIT

May be
NULL
Not
NULL
NULL

NONE
SINGLE
MULTI

INIT May be
NULL max
MULTI

Pointed volatile
scalar

un-
supported

un-
supported

Pointed extern
scalar

INIT un-
supported

INIT
min..max

Pointed other
scalars

MAIN_
GENERATOR
INIT

un-
supported

MAIN_
GENERATOR
dependant

Pointed pointer MAIN_
GENERATOR
INIT/

un-
supported

May be
NULL
Not
NULL
NULL

NONE
SINGLE
MULTI

MAIN_
GENERATOR
dependant

Global
variables

Pointer

Pointed function un-
supported

un-
supported

Specify Data Ranges Using Text Files
To use the DRS feature, you must provide a list of variables and their
associated data ranges.

1-104

Specify Data Ranges for Global Variables

You can specify data ranges using the Polyspace DRS Configuration
dialog box (see “Specify Data Ranges Using DRS Template” on page 1-90), or
you can provide a text file that contains a list of variables and data ranges.

To specify data ranges using a DRS text file:

1 Create a DRS text file containing the list of global variables (or functions)
and their associated data ranges, as described in “DRS Text File Format”
on page 1-106.

2 Open the project.

3 In the Project Manager perspective, select the Configuration > Inputs &
Stubbing node.

4 To the right of the Variable/function range setup field, click the Edit
button.

The Polyspace DRS Configuration dialog box opens.

5 On the toolbar, click the button .

6 Navigate to the folder that contains the required DRS text file, and select
the file. Then click Open.

7 In the Polyspace DRS Configuration dialog box, click OK.

8 Select File > Save Project to save your project settings, including the
DRS file location.

1-105

1 Project Configuration

When you run an analysis, the software automatically merges the data ranges
in the text file with a DRS template for the project and saves the information
in the file drs-template.xml, located in your results folder.

DRS Text File Format
The DRS file contains a list of global variables and associated data ranges.
The point during verification at which the range is applied to a variable is
controlled by the mode keyword: init, permanent, or globalassert.

The DRS file must have the following format:

variable_name min_value max_value <init|permanent|globalassert>

• variable_name— The name of the global variable.

• min_value— The minimum value for the variable.

• max_value— The maximum value for the variable.

• init— The variable is assigned to the specified range only at initialization,
and keeps it until first write.

• permanent— The variable is permanently assigned to the specified range.
If the variable is assigned outside this range during the program, no
warning is provided. Use the globalassert mode if you need a warning.

• globalassert — After each assignment, an assert check is performed,
controlling the specified range. The assert check is also performed at
global initialization.

Tips for Creating DRS Text Files

• You can use the keywords "min" and "max" to denote the minimum and
maximum values of the variable type. For example, for the type long, min
and max correspond to -2^31 and 2^31-1 respectively.

• You can use hexadecimal values. For example, x 0x12 0x100 init.

• Supported column separators are tab, comma, space, or semicolon.

• To insert comments, use shell style “#”.

1-106

Specify Data Ranges for Global Variables

Example DRS Text File
In the following example, the global variables are named x, y, z, w, and v.

x 12 100 init
y 0 10000 permanent
z 0 1 globalassert
w min max permanent
v 0 max globalassert
arrayOfInt -10 20 init
s1.id 0 max init
array.c2 min 1 init
car.speed 0 350 permanent
bar.return -100 100 permanent

x is defined between [12;100] at initialization
y is permanently defined between [0,10000] even any assignment
z is checked in the range [0;1] after each assignment
w is volatile and full range on its declaration type
v is positive and checked after each assignment.
All cells arrayOfInt are defined between [-10;20] at initialization
s1.id is defined between [0;2^31-1] at initialisation.
All cells array[i].c2 are defined between [-2^31;1] at initialization
Speed of Struct car is permanently defined between 0 and 350 Km/h
function bar returns -100..100

1-107

1 Project Configuration

1-108

2

Setting Up Project:
Additional Information

• “Create Projects Using Visual Studio Information” on page 2-2

• “Cannot create project from Visual Studio build” on page 2-6

• “Storage of Polyspace Preferences” on page 2-7

2 Setting Up Project: Additional Information

Create Projects Using Visual Studio Information

In this section...

“Use Visual Studio Project” on page 2-2

“Trace Visual Studio Build” on page 2-3

Use Visual Studio Project
You can directly create a Polyspace project from a Visual Studio® project file
with extension .vcproj. The Visual Studio import retrieves the following
information from a Visual Studio project:

• Source files

• Include folders

• Some Target & Compiler options

• Preprocessor Macros

Note For Visual Studio 2010 or Visual Studio 2012, you cannot directly
import your project.

1 In the Project Manager perspective, select File > Import Visual Studio
Project.

2 In the Import Visual Studio dialog box, specify the Visual Studio project
that you want to use.

3 You can:

• Create new Polyspace project: Enter full path to a new Polyspace
project.

• Update existing Polyspace project: The dropdown list contains all
projects currently open in the Project Browser. Select the project you
want to update.

4 Click Import.

2-2

Create Projects Using Visual Studio® Information

Trace Visual Studio Build
To create a Polyspace project, you can trace your Visual Studio build.

1 In the Polyspace Project Manager, select File > New Project.

2 In the Project – Properties window, enter your project information.

a Choose C++ as Project Language.

b Under Project Configuration, select Create from build command
and click Next.

2-3

2 Setting Up Project: Additional Information

3 In the field Specify command used for building your source
files, enter the full path to the Visual Studio executable. For
instance, "C:\Program Files (x86)\Microsoft Visual Studio
11.0\Common7\IDE\devenv.exe".

4 In the field Specify working directory for running build command,

enter C:\. Click .

2-4

Create Projects Using Visual Studio® Information

This action opens the Visual Studio environment.

5 In the Visual Studio environment, create and build a Visual Studio project.

If you already have a Visual Studio project, open the existing project and
build a clean solution. To build a clean solution in Visual Studio 2012,
select BUILD > Rebuild Solution.

6 After the project builds, close Visual Studio.

Polyspace traces your Visual Studio build and creates a Polyspace project.

The Polyspace project contains the source files from your Visual Studio
build and the relevant Target & Compiler options.

7 If you update your Visual Studio project, to update the corresponding
Polyspace project, on the Project Browser, right-click the project name
and select Update Project.

Related
Examples

• “Visual Studio Environment”

Concepts • “Cannot create project from Visual Studio build” on page 2-6

2-5

2 Setting Up Project: Additional Information

Cannot create project from Visual Studio build
If you are trying to import a Visual Studio 2010 or Visual Studio 2012 project
and polyspace-configure does not work properly, do the following:

1 Stop the MSBuild.exe process.

2 Set the environment variable MSBUILDDISABLENODEREUSE to 1.

3 Specify MSBuild.exe with the/nodereuse:false option.

4 Restart the Polyspace configuration tool:

polyspace-configure.exe -lang cpp <MSVS
path>/msbuild sample.sln

2-6

Storage of Polyspace® Preferences

Storage of Polyspace Preferences
The software stores the settings that you specify through the Polyspace
Preferences dialog box in the following file:

• Windows: $Drive\Users\$User\AppData\Roaming\MathWorks
\MATLAB\$Release\Polyspace\polyspace.prf

• Linux: /home/$User/.matlab/$Release/Polyspace/polyspace.prf

Here, $Drive is the drive where the operating system files are located such
as C:, $User is the username such as johndoe and $Release is the release
number such as 2014a.

The following file stores the location of all installed Polyspace products across
various releases:

• Windows: $Drive\Users\$User\AppData\Roaming\MathWorks\MATLAB
\AppData\Roaming\MathWorks\MATLAB
\polyspace_shared\polyspace_products.prf

• Linux :
/home/$User/.matlab/polyspace_shared/polyspace_products.prf

2-7

2 Setting Up Project: Additional Information

2-8

3

Coding Rule Sets and
Concepts

• “Rule Checking” on page 3-2

• “Custom Naming Convention Rules” on page 3-3

• “Polyspace MISRA C and MISRA AC AGC Checkers” on page 3-10

• “Software Quality Objective Subsets (C)” on page 3-11

• “Software Quality Objective Subsets (AC AGC)” on page 3-16

• “MISRA C:2004 Coding Rules” on page 3-18

• “Polyspace MISRA C++ Checker” on page 3-59

• “Software Quality Objective Subsets (C++)” on page 3-60

• “MISRA C++ Coding Rules” on page 3-69

• “Polyspace JSF C++ Checker” on page 3-95

• “JSF C++ Coding Rules” on page 3-96

3 Coding Rule Sets and Concepts

Rule Checking
Polyspace software allows you to analyze code to demonstrate compliance with
established C and C++ coding standards (MISRA C 2004, MISRA C++:2008
or JSF++:2005).

Applying coding rules can reduce the number of defects and improve the
quality of your code.

While creating a project, you specify both the coding standard, and individual
rules to enforce. Polyspace software then performs rule checking before
starting analysis, and reports any errors or warnings in the Results Manager
perspective.

If any source files in the analysis do not compile, coding rules checking will
be incomplete. The coding rules checker results:

• May not contain full results for files that did not compile

• May not contain full results for the files that did compile as some rules are
checked only after compilation is complete

Note The Compiler Assistant is selected by default. However, when you
enable the Compiler Assistant and coding rules checking, the software does
not report coding rule violations if there are compilation errors.

3-2

Custom Naming Convention Rules

Custom Naming Convention Rules
The following table provides information about the custom rules that you
can define.

Rule group Number Rule Applied Message generated
if rule is violated

Other details

1.1 All source file names
must follow the
specified pattern.

The source file name
“file_name” does not
match the specified
pattern.

Only the base name
is checked. A source
file is a file that is not
included.

1.2 All source folder
names must follow
the specified pattern.

The source dir name
“dir_name” does not
match the specified
pattern.

Only the folder name
is checked. A source
file is a file that is not
included.

1.3 All include file names
must follow the
specified pattern.

The include file name
“file_name” does not
match the specified
pattern.

Only the base name is
checked. An include
file is a file that is
included.

Files

(C/C++)

1.4 All include folder
names must follow
the specified pattern.

The include dir name
“dir_name” does not
match the specified
pattern.

Only the folder name
is checked. An include
file is a file that is
included.

2.1 All macros must
follow the specified
pattern.

The macro
“macro_name” does
not match the
specified pattern.

Macro names are
checked before
preprocessing.

Preprocessing

(C/C++) 2.2 All macro parameters
must follow the
specified pattern.

The macro parameter
“param_name”
does not match the
specified pattern.

Macro parameters
are checked before
preprocessing.

3-3

3 Coding Rule Sets and Concepts

Rule group Number Rule Applied Message generated
if rule is violated

Other details

3.1 All integer types must
follow the specified
pattern.

The integer type
“type_name” does not
match the specified
pattern.

Applies to integer
types specified by
typedef statements.
Does not apply
to enumeration
types. For example:
typedef signed int
int32_t;

3.2 All float types must
follow the specified
pattern.

The float type
“type_name” does not
match the specified
pattern.

Applies to float types
specified by typedef
statements. For
example: typedef
float f32_t;

3.3 All pointer typesmust
follow the specified
pattern.

The pointer type
“type_name” does not
match the specified
pattern.

Applies to pointer
types specified by
typedef statements.
For example: typedef
int* p_int;

3.4 All array types must
follow the specified
pattern.

The array type
“type_name” does not
match the specified
pattern.

Applies to array types
specified by typedef
statements. For
example: typedef
int[3] a_int_3;

Type
definitions

(C/C++)

3.5 All function pointer
types must follow the
specified pattern.

The function pointer
type “type_name”
does not match the
specified pattern.

Applies to function
pointer types
specified by
typedef statements.
For example:
typedef void
(*pf_callback)
(int);

3-4

Custom Naming Convention Rules

Rule group Number Rule Applied Message generated
if rule is violated

Other details

4.1 All struct tags must
follow the specified
pattern.

The struct tag
“tag_name” does not
match the specified
pattern.

4.2 All struct typesmust
follow the specified
pattern.

The struct type
“type_name” does not
match the specified
pattern.

This is the typedef
name.

4.3 All struct fields
must follow the
specified pattern.

The struct field
“field_name” does not
match the specified
pattern.

Structures

(C/C++)

4.4 All struct bit fields
must follow the
specified pattern.

The struct bit field
“field_name” does not
match the specified
pattern.

5.1 All class names must
follow the specified
pattern.

The class tag
“tag_name” does not
match the specified
pattern.

5.2 All class types must
follow the specified
pattern.

The class type
“type_name” does not
match the specified
pattern.

This is the typedef
name.

5.3 All data members
must follow the
specified pattern.

The data member
“member_name”
does not match the
specified pattern.

5.4 All function members
must follow the
specified pattern.

The function member
“member_name”
does not match the
specified pattern.

Classes

(C++)

3-5

3 Coding Rule Sets and Concepts

Rule group Number Rule Applied Message generated
if rule is violated

Other details

5.5 All static data
members must follow
the specified pattern.

The static
data member
“member_name”
does not match the
specified pattern.

5.6 All static function
members must follow
the specified pattern.

The static
function member
“member_name”
does not match the
specified pattern.

5.7 All bitfield members
must follow the
specified pattern.

The bitfield
“member_name”
does not match the
specified pattern.

6.1 All enumeration
tags must follow the
specified pattern.

The enumeration tag
“tag_name” does not
match the specified
pattern.

6.2 All enumeration
types must follow the
specified pattern.

The enumeration type
“type_name” does not
match the specified
pattern.

This is the typedef
name.Enumerations

(C/C++)

6.3 All enumeration
constants must follow
the specified pattern.

The enumeration
constant
“constant_name”
does not match the
specified pattern.

3-6

Custom Naming Convention Rules

Rule group Number Rule Applied Message generated
if rule is violated

Other details

7.1 All global functions
must follow the
specified pattern.

The global function
“function_name”
does not match the
specified pattern.

A global function is a
function with external
linkage.

7.2 All static functions
must follow the
specified pattern.

The static function
“function_name”
does not match the
specified pattern.

A static function is a
function with internal
linkage.

Functions

(C/C++)

7.3 All function
parameters must
follow the specified
pattern.

The function
parameter
“param_name”
does not match the
specified pattern.

In C++, applies
to non-member
functions.

8.1 All global constants
must follow the
specified pattern.

The global constant
“constant_name”
does not match the
specified pattern.

A global constant
is a constant with
external linkage.

8.2 All static constants
must follow the
specified pattern.

The static constant
“constant_name”
does not match the
specified pattern.

A static constant is a
constant with internal
linkage.

8.3 All local constants
must follow the
specified pattern.

The local constant
“constant_name”
does not match the
specified pattern.

A local constant is
a constant with no
linkage.

Constants

(C/C++)

8.4 All static local
constants must follow
the specified pattern.

The static
local constant
“constant_name”
does not match the
specified pattern.

A static local constant
is a constant declared
static in a function.

3-7

3 Coding Rule Sets and Concepts

Rule group Number Rule Applied Message generated
if rule is violated

Other details

9.1 All global variables
must follow the
specified pattern.

The global variable
“var_name” does not
match the specified
pattern.

A global variable is a
variable with external
linkage.

9.2 All static variables
must follow the
specified pattern.

The static variable
“var_name” does not
match the specified
pattern.

A static variable is a
variable with internal
linkage.

9.3 All local variables
must follow the
specified pattern.

The local variable
“var_name” does not
match the specified
pattern.

A local variable is
a variable with no
linkage.

Variables

(C/C++)

9.4 All static local
variables must follow
the specified pattern.

The static local
variable “var_name”
does not match the
specified pattern.

A static local variable
is a variable declared
static in a function.

Name spaces

(C++)

10.1 All namespaces must
follow the specified
pattern.

The namespace
“namespace_name”
does not match the
specified pattern.

11.1 All class templates
must follow the
specified pattern.

The class template
“template_name”
does not match the
specified pattern.Class

templates

(C++)
11.2 All class template

parameters must
follow the specified
pattern.

The class template
parameter
“param_name”
does not match the
specified pattern.

3-8

Custom Naming Convention Rules

Rule group Number Rule Applied Message generated
if rule is violated

Other details

12.1 All function
templates must follow
the specified pattern.

The function template
“template_name”
does not match the
specified pattern.

Applies to
non-member
functions.

12.2 All function template
parameters must
follow the specified
pattern.

The function
template parameter
“param_name”
does not match the
specified pattern.

Applies to
non-member
functions.

Function
templates

(C++)

12.3 All function template
members must follow
the specified pattern.

The function
template member
“member_name”
does not match the
specified pattern.

3-9

3 Coding Rule Sets and Concepts

Polyspace MISRA C and MISRA AC AGC Checkers
The Polyspace MISRA C checker helps you comply with the MISRA C 2004
coding standard.8

When MISRA C rules are violated, the MISRA C checker enables Polyspace
software to provide messages with information about the rule violations. Most
messages are reported during the compile phase of an analysis.

The MISRA C checker can check nearly all of the 142 MISRA C:2004 rules.

The MISRA AC AGC checker checks rules from the OBL (obligatory) and REC
(recommended) categories specified by MISRA AC AGC Guidelines for the
Application of MISRA-C:2004 in the Context of Automatic Code Generation.

There are subsets of MISRA coding rules that can have a direct or indirect
impact on the selectivity (reliability percentage) of your results. When you
set up rule checking, you can select these subsets directly. These subsets
are defined in:

• “Software Quality Objective Subsets (C)” on page 3-11

• “Software Quality Objective Subsets (AC AGC)” on page 3-16

Note The Polyspace MISRA checker is based on MISRA C:2004, which also
incorporates MISRA-C Technical Corrigendum (http://www.misra-c.com).

8. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

3-10

http://www.misra-c.com/

Software Quality Objective Subsets (C)

Software Quality Objective Subsets (C)

In this section...

“Rules in SQO-Subset1” on page 3-11

“Rules in SQO-Subset2” on page 3-13

Rules in SQO-Subset1
In Polyspace Code Prover, the following set of coding rules will typically
reduce the number of unproven results.

Rule
number

Description

MISRA 8.11 The static storage class specifier shall be used in definitions
and declarations of objects and functions that have internal
linkage.

MISRA 8.12 When an array is declared with external linkage, its
size shall be stated explicitly or defined implicitly by
initialization.

MISRA 11.2 Conversion shall not be performed between a pointer to an
object and any type other than an integral type, another
pointer to a object type or a pointer to void.

MISRA 11.3 A cast should not be performed between a pointer type and
an integral type.

MISRA 12.12 The underlying bit representations of floating-point values
shall not be used.

MISRA 13.3 Floating-point expressions shall not be tested for equality
or inequality.

MISRA 13.4 The controlling expression of a for statement shall not
contain any objects of floating type.

3-11

3 Coding Rule Sets and Concepts

Rule
number

Description

MISRA 13.5 The three expressions of a for statement shall be concerned
only with loop control.

MISRA 14.4 The goto statement shall not be used.
MISRA 14.7 A function shall have a single point of exit at the end of the

function.

MISRA 16.1 Functions shall not be defined with variable numbers of
arguments.

MISRA 16.2 Functions shall not call themselves, either directly or
indirectly.

MISRA 16.7 A pointer parameter in a function prototype should be
declared as pointer to const if the pointer is not used to
modify the addressed object.

MISRA 17.3 >, >=, <, <= shall not be applied to pointer types except
where they point to the same array.

MISRA 17.4 Array indexing shall be the only allowed form of pointer
arithmetic.

MISRA 17.5 The declaration of objects should contain no more than 2
levels of pointer indirection.

MISRA 17.6 The address of an object with automatic storage shall not
be assigned to an object that may persist after the object
has ceased to exist.

MISRA 18.3 An area of memory shall not be reused for unrelated
purposes.

MISRA 18.4 Unions shall not be used.

MISRA 20.4 Dynamic heap memory allocation shall not be used.

Note Polyspace software does not check MISRA rule 18.3.

3-12

Software Quality Objective Subsets (C)

Rules in SQO-Subset2
Good design practices generally lead to less code complexity, which can reduce
the number of unproven results in Polyspace Code Prover. The following set
of coding rules enforce good design practices.

Note Specifying SQO-subset2 in your MISRA C rules configuration
checks both the rules listed in SQO-subset1 and SQO-subset2.

Rule number Description

MISRA 6.3 typedefs that indicate size and signedness should be used
in place of the basic types

MISRA 8.7 Objects shall be defined at block scope if they are only
accessed from within a single function

MISRA 9.2 Braces shall be used to indicate and match the structure in
the nonzero initialization of arrays and structures

MISRA 9.3 In an enumerator list, the = construct shall not be used to
explicitly initialize members other than the first, unless all
items are explicitly initialized

MISRA 10.3 The value of a complex expression of integer type may
only be cast to a type that is narrower and of the same
signedness as the underlying type of the expression

MISRA 10.5 Bitwise operations shall not be performed on signed integer
types

MISRA 11.1 Conversion shall not be performed between a pointer to a
function and any type other than an integral type

MISRA 11.5 Type casting from any type to or from pointers shall not
be used

MISRA 12.1 Limited dependence should be placed on C’s operator
precedence rules in expressions

MISRA 12.2 The value of an expression shall be the same under any
order of evaluation that the standard permits

3-13

3 Coding Rule Sets and Concepts

Rule number Description

MISRA 12.5 The operands of a logical && or || shall be
primary-expressions

MISRA 12.6 Operands of logical operators (&&, || and !) should be
effectively Boolean. Expression that are effectively Boolean
should not be used as operands to operators other than
(&&, || or !)

MISRA 12.9 The unary minus operator shall not be applied to an
expression whose underlying type is unsigned

MISRA 12.10 The comma operator shall not be used

MISRA 13.1 Assignment operators shall not be used in expressions that
yield Boolean values

MISRA 13.2 Tests of a value against zero should be made explicit,
unless the operand is effectively Boolean

MISRA 13.6 Numeric variables being used within a “for” loop for
iteration counting should not be modified in the body of
the loop

MISRA 14.8 The statement forming the body of a switch, while, do while
or for statement shall be a compound statement

MISRA 14.10 All if else if constructs should contain a final else clause
MISRA 15.3 The final clause of a switch statement shall be the default

clause

MISRA 16.3 Identifiers shall be given for all of the parameters in a
function prototype declaration

MISRA 16.8 All exit paths from a function with non-void return type
shall have an explicit return statement with an expression

MISRA 16.9 A function identifier shall only be used with either a
preceding &, or with a parenthesized parameter list, which
may be empty

MISRA 19.4 C macros shall only expand to a braced initializer, a
constant, a parenthesized expression, a type qualifier, a
storage class specifier, or a do-while-zero construct

3-14

Software Quality Objective Subsets (C)

Rule number Description

MISRA 19.9 Arguments to a function-like macro shall not contain
tokens that look like preprocessing directives

MISRA 19.10 In the definition of a function-like macro each instance of
a parameter shall be enclosed in parentheses unless it is
used as the operand of # or ##

MISRA 19.11 All macro identifiers in preprocessor directives shall be
defined before use, except in #ifdef and #ifndef preprocessor
directives and the defined() operator

MISRA 19.12 There shall be at most one occurrence of the # or ##
preprocessor operators in a single macro definition.

MISRA 20.3 The validity of values passed to library functions shall be
checked.

Note Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the
validity of values. For example, the following code checks the validity of an
input being greater than 1:

int my_system_library_call(int in) {assert (in>1); if random \
return -1 else return 0; }

3-15

3 Coding Rule Sets and Concepts

Software Quality Objective Subsets (AC AGC)

In this section...

“Rules in SQO-Subset1” on page 3-16

“Rules in SQO-Subset2” on page 3-16

Rules in SQO-Subset1
• 5.2

• 8.11 and 8.12

• 11.2 and 11.3

• 12.12

• 14.7

• 16.1 and 16.2

• 17.3 and 17.6

• 18.4

For more information about these rules, see MISRA AC AGC Guidelines for
the Application of MISRA-C:2004 in the Context of Automatic Code Generation.

Rules in SQO-Subset2
• 5.2

• 6.3

• 8.7, 8.11, and 8.12

• 9.3

• 11.1, 11.2, 11.3, and 11.5

• 12.2, 12.9, 12.10, and 12.12

• 14.7

• 16.1, 16.2, 16.3, 16.8, and 16.9

• 17.3, and 17.6

3-16

Software Quality Objective Subsets (AC AGC)

• 18.4

• 19.9, 19.10, 19.11, and 19.12

• 20.3

Note When you specify SQO-subset2 for your MISRA AC AGC rules
configuration, the software checks the rules listed in SQO-subset1 and
SQO-subset2.

For more information about these rules, see MISRA AC AGC Guidelines for
the Application of MISRA-C:2004 in the Context of Automatic Code Generation.

3-17

3 Coding Rule Sets and Concepts

MISRA C:2004 Coding Rules

In this section...

“Supported MISRA C:2004 Rules” on page 3-18

“MISRA C:2004 Rules Not Checked” on page 3-56

Supported MISRA C:2004 Rules
The following tables list MISRA C:2004 coding rules that the Polyspace
coding rules checker supports. Details regarding how the software checks
individual rules and any limitations on the scope of checking are described
in the “Detailed Polyspace Specification” column.

Note The Polyspace coding rules checker:

• Supports MISRA-C:2004 Technical Corrigendum 1 for rules 4.1, 5.1, 5.3,
6.1, 6.3, 7.1, 9.2, 10.5, 12.6, 13.5, and 15.0.

• Checks rules specified by MISRA AC AGC Guidelines for the Application of
MISRA-C:2004 in the Context of Automatic Code Generation.

The software reports most violations during the compile phase of
an analysis. However, the software detects violations of rules 9.1
(Non-initialized variable), 12.11 (one of the overflow checks) using
-scalar-overflows-checks signed-and-unsigned), 13.7 (dead code), 14.1
(dead code), 16.2 and 21.1 during code analysis, and reports these violations
as run-time errors.

Note Some violations of rules 13.7 and 14.1 are reported during the compile
phase of analysis.

3-18

MISRA C®:2004 Coding Rules

Environment

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

1.1 All code shall conform
to ISO® 9899:1990
“Programming languages
- C”, amended and
corrected by ISO/IEC
9899/COR1:1995, ISO/IEC
9899/AMD1:1995, and
ISO/IEC 9899/COR2:1996.

The text All code
shall conform to
ISO 9899:1990
Programming languages
C, amended and
corrected by ISO/IEC
9899/COR1:1995, ISO/IEC
9899/AMD1:1995, and
ISO/IEC 9899/COR2:1996
precedes each of the
following messages:

• ANSI® C does not allow
‘#include_next’

• ANSI C does not allow
macros with variable
arguments list

• ANSI C does not allow
‘#assert’

• ANSI C does not allow
’#unassert’

• ANSI C does not allow
testing assertions

• ANSI C does not allow
’#ident’

• ANSI C does not allow
’#sccs’

• text following ’#else’
violates ANSI standard.

• text following ’#endif’
violates ANSI standard.

All the supported
extensions lead to a
violation of this MISRA
rule. Standard compilation
error messages do not lead
to a violation of this MISRA
rule and remain unchanged.

3-19

3 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

• text following ’#else’ or
’#endif’ violates ANSI
standard.

• ANSI C90 forbids ’long
long int’ type.

• ANSI C90 forbids ’long
double’ type.

• ANSI C90 forbids long
long integer constants.

• Keyword ’inline’ should
not be used.

• Array of zero size should
not be used.

• Integer constant does not
fit within unsigned long
int.

• Integer constant does not
fit within long int.

Language Extensions

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

2.1 Assembly language shall be
encapsulated and isolated.

Assembly language shall be
encapsulated and isolated.

No warnings if code
is encapsulated in asm
functions or in asm pragma
(only warning is given on

3-20

MISRA C®:2004 Coding Rules

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

asm statements even if it is
encapsulated by aMACRO).

2.2 Source code shall only use
/* */ style comments

C++ comments shall not be
used.

C++ comments are handled
as comments but lead to
a violation of this MISRA
ruleNote: This rule cannot
be annotated in the source
code.

2.3 The character sequence /*
shall not be used within a
comment

The character sequence /*
shall not appear within a
comment.

This rule violation is also
raised when the character
sequence /* inside a C++
comment.Note: This rule
cannot be annotated in the
source code.

Documentation

Rule MISRA Definition Messages in report
file

Detailed Polyspace
Specification

3.4 All uses of the
#pragma directive
shall be documented
and explained.

All uses of the
#pragma directive
shall be documented
and explained.

To check this
rule, the option
-allowed-pragmas
must be set to the
list of pragmas that
are allowed in source
files. Warning if a
pragma that does not
belong to the list is
found.

3-21

3 Coding Rule Sets and Concepts

Character Sets

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

4.1 Only those escape sequences
which are defined in the
ISO C standard shall be
used.

\<character> is not an ISO
C escape sequence
Only those escape
sequences which are
defined in the ISO C
standard shall be used.

4.2 Trigraphs shall not be used. Trigraphs shall not be used. Trigraphs are handled and
converted to the equivalent
character but lead to a
violation of the MISRA rule

Identifiers

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

5.1 Identifiers (internal and
external) shall not rely on
the significance of more
than 31 characters

Identifier ’XX’ should not
rely on the significance of
more than 31 characters.

All identifiers (global, static
and local) are checked.

5.2 Identifiers in an inner scope
shall not use the same name
as an identifier in an outer
scope, and therefore hide
that identifier.

• Local declaration of XX is
hiding another identifier.

• Declaration of parameter
XX is hiding another
identifier.

Assumes that rule 8.1 is not
violated.

5.3 A typedef name shall be a
unique identifier

{ typedef name }’%s’ should
not be reused. (already
used as { typedef name } at
%s:%d)

Warning when a typedef
name is reused as another
identifier name.

5.4 A tag name shall be a
unique identifier

{tag name }’%s’ should not
be reused. (already used as
{tag name } at %s:%d)

Warning when a tag
name is reused as another
identifier name

3-22

MISRA C®:2004 Coding Rules

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

5.5 No object or function
identifier with a static
storage duration should be
reused.

{ static identifier/parameter
name }’%s’ should not be
reused. (already used as
{static identifier/parameter
name } with static storage
duration at %s:%d)

Warning when a static
name is reused as another
identifier name

5.6 No identifier in one name
space should have the same
spelling as an identifier in
another name space, with
the exception of structure
and union member names.

{member name }’%s’ should
not be reused. (already
used as { member name } at
%s:%d)

Warning when a idf in a
namespace is reused in
another namespace

5.7 No identifier name should
be reused.

{identifier}’%s’ should not
be reused. (already used as
{ identifier} at %s:%d)

No violation reported when:

• Different functions have
parameters with the
same name

• Different functions have
local variables with the
same name

• A function has a local
variable that has
the same name as a
parameter of another
function

3-23

3 Coding Rule Sets and Concepts

Types

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

6.1 The plain char type shall
be used only for the storage
and use of character values

Only permissible operators
on plain chars are ’=’, ’==’ or
’!=’ operators, explicit casts
to integral types and ’?’ (for
the 2nd and 3rd operands)

Warning when a plain char
is used with an operator
other than =, ==, !=, explicit
casts to integral types,
or as the second or third
operands of the ? operator.

6.2 Signed and unsigned char
type shall be used only
for the storage and use of
numeric values.

• Value of type plain char
is implicitly converted to
signed char.

• Value of type plain char
is implicitly converted to
unsigned char.

• Value of type signed char
is implicitly converted to
plain char.

• Value of type unsigned
char is implicitly
converted to plain char.

Warning if value of type
plain char is implicitly
converted to value of type
signed char or unsigned
char.

6.3 typedefs that indicate size
and signedness should be
used in place of the basic
types

typedefs that indicate size
and signedness should be
used in place of the basic
types.

No warning is given in
typedef definition.

6.4 Bit fields shall only be
defined to be of type
unsigned int or signed int.

Bit fields shall only be
defined to be of type
unsigned int or signed int.

6.5 Bit fields of type signed int
shall be at least 2 bits long.

Bit fields of type signed int
shall be at least 2 bits long.

No warning on anonymous
signed int bitfields of width
0 - Extended to all signed
bitfields of size <= 1 (if Rule
6.4 is violated).

3-24

MISRA C®:2004 Coding Rules

Constants

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

7.1 Octal constants (other
than zero) and octal escape
sequences shall not be used.

• Octal constants other
than zero and octal
escape sequences shall
not be used.

• Octal constants (other
than zero) should not be
used.

• Octal escape sequences
should not be used.

Declarations and Definitions

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

8.1 Functions shall have
prototype declarations
and the prototype shall be
visible at both the function
definition and call.

• Function XX has no
complete prototype
visible at call.

• Function XX has no
prototype visible at
definition.

Prototype visible at call
must be complete.

8.2 Whenever an object or
function is declared or
defined, its type shall be
explicitly stated

Whenever an object or
function is declared or
defined, its type shall be
explicitly stated.

8.3 For each function parameter
the type given in the
declaration and definition
shall be identical, and the
return types shall also be
identical.

Definition of function
’XX’ incompatible with its
declaration.

Assumes that rule 8.1 is
not violated. The rule is
restricted to compatible
types. Can be turned to Off

3-25

3 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

8.4 If objects or functions
are declared more than
once their types shall be
compatible.

• If objects or functions
are declared more than
once their types shall be
compatible.

• Global declaration
of ’XX’ function has
incompatible type with
its definition.

• Global declaration
of ’XX’ variable has
incompatible type with
its definition.

Violations of this rule might
be generated during the
link phase.

8.5 There shall be no definitions
of objects or functions in a
header file

• Object ’XX’ should not be
defined in a header file.

• Function ’XX’ should not
be defined in a header
file.

• Fragment of function
should not be defined in
a header file.

Tentative of definitions are
considered as definitions.

8.6 Functions shall always be
declared at file scope.

Function ’XX’ should be
declared at file scope.

8.7 Objects shall be defined
at block scope if they are
only accessed from within a
single function

Object ’XX’ should be
declared at block scope.

Restricted to static objects.

8.8 An external object or
function shall be declared in
one file and only one file

Function/Object ’XX’ has
external declarations in
multiples files.

Restricted to explicit extern
declarations (tentative of
definitions are ignored).

3-26

MISRA C®:2004 Coding Rules

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

8.9 Definition: An identifier
with external linkage shall
have exactly one external
definition.

• Procedure/Global
variable XX multiply
defined.

• Forbidden multiple
tentative of definition for
object XX

• Global variable has
multiples tentative of
definitions

• Undefined global
variable XX

Tentative of definitions are
considered as definitions,
no warning on predefined
symbols.

8.10 All declarations and
definitions of objects or
functions at file scope shall
have internal linkage unless
external linkage is required

Function/Variable XX
should have internal
linkage.

Assumes that 8.1 is not
violated. No warning if 0
uses.

8.11 The static storage class
specifier shall be used in
definitions and declarations
of objects and functions that
have internal linkage

static storage class specifier
should be used on internal
linkage symbol XX.

8.12 When an array is declared
with external linkage, its
size shall be stated explicitly
or defined implicitly by
initialization

Array XX has unknown
size.

3-27

3 Coding Rule Sets and Concepts

Initialization

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

9.1 All automatic variables
shall have been assigned a
value before being used.

Checked during code
analysis.

Violations displayed as
Non-initialized variable
results.

9.2 Braces shall be used to
indicate and match the
structure in the nonzero
initialization of arrays and
structures.

Braces shall be used to
indicate and match the
structure in the nonzero
initialization of arrays and
structures.

9.3 In an enumerator list, the
= construct shall not be
used to explicitly initialize
members other than the
first, unless all items are
explicitly initialized.

In an enumerator list, the
= construct shall not be
used to explicitly initialize
members other than the
first, unless all items are
explicitly initialized.

Arithmetic Type Conversion

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

10.1 The value of an expression
of integer type shall not be
implicitly converted to a
different underlying type if:

• it is not a conversion to a
wider integer type of the
same signedness, or

• the expression is complex,
or

• Implicit conversion of the
expression of underlying
type XX to the type
XX that is not a wider
integer type of the same
signedness.

• Implicit conversion of one
of the binary operands
whose underlying types
are XX and XX

1 ANSI C base types order
(signed char, short, int,
long) defines that T2 is
wider than T1 if T2 is
on the right hand of T1
or T2 = T1. The same
interpretation is applied
on the unsigned version
of base types.

3-28

MISRA C®:2004 Coding Rules

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

• the expression is not
constant and is a function
argument, or

• the expression is not
constant and is a return
expression

• Implicit conversion of
the binary right hand
operand of underlying
type XX to XX that is not
an integer type.

• Implicit conversion of the
binary left hand operand
of underlying type XX to
XX that is not an integer
type.

• Implicit conversion of
the binary right hand
operand of underlying
type XX to XX that is
not a wider integer type
of the same signedness
or Implicit conversion of
the binary ? left hand
operand of underlying
type XX to XX, but it is a
complex expression.

• Implicit conversion
of complex integer
expression of underlying
type XX to XX.

• Implicit conversion of
non-constant integer
expression of underlying
type XX in function
return whose expected
type is XX.

• Implicit conversion of
non-constant integer
expression of underlying

2 An expression of bool or
enum types has int as
underlying type.

3 Plain char may have
signed or unsigned
underlying type
(depending on Polyspace
target configuration or
option setting).

4 The underlying type
of a simple expression
of struct.bitfield is the
base type used in the
bitfield definition, the
bitfield width is not
token into account and it
assumes that only signed
| unsigned int are used
for bitfield (Rule 6.4).

5 No violation reported
when:

• The implicit
conversion is a type
widening, without
change of signedness
if integer

• The expression is an
argument expression
or a return expression

6 No violation reported
when the following are
all true:

3-29

3 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

type XX as argument
of function whose
corresponding parameter
type is XX.

• Implicit conversion
applies to a constant
expression and is a
type widening, with
a possible change of
signedness if integer

• The conversion does
not change the
representation of the
constant value or the
result of the operation

• The expression
is an argument
expression or a return
expression or an
operand expression of
a non-bitwise operator

10.2 The value of an expression
of floating type shall not
be implicitly converted to a
different type if

• it is not a conversion to a
wider floating type, or

• the expression is complex,
or

• the expression is a
function argument, or

• the expression is a return
expression

• Implicit conversion of the
expression from XX to
XX that is not a wider
floating type.

• Implicit conversion of
the binary ? right hand
operand from XX to
XX, but it is a complex
expression.

• Implicit conversion of
the binary ? right hand
operand from XX to
XX that is not a wider
floating type or Implicit
conversion of the binary
? left hand operand from

ANSI C base types order
(float, double) defines that
T2 is wider than T1 if T2 is
on the right hand of T1 or
T2 = T1.

No violation reported when:

• The implicit conversion
is a type widening

• The expression is an
argument expression or
a return expression.

3-30

MISRA C®:2004 Coding Rules

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

XX to XX, but it is a
complex expression.

• Implicit conversion
of complex floating
expression from XX to
XX.

• Implicit conversion of
floating expression of XX
type in function return
whose expected type is
XX.

• Implicit conversion of
floating expression of
XX type as argument
of function whose
corresponding parameter
type is XX.

10.3 The value of a complex
expression of integer type
may only be cast to a type
that is narrower and of
the same signedness as
the underlying type of the
expression

Complex expression of
underlying type XX may
only be cast to narrower
integer type of same
signedness, however the
destination type is XX.

• ANSI C base types order
(signed char, short, int,
long) defines that T1 is
narrower than T2 if T2
is on the right hand of
T1 or T1 = T2. The same
methodology is applied
on the unsigned version
of base types.

• An expression of bool or
enum types has int as
underlying type.

• Plain char may have
signed or unsigned
underlying type
(depending on target

3-31

3 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

configuration or option
setting).

• The underlying type
of a simple expression
of struct.bitfield is the
base type used in
the bitfield definition,
the bitfield width is
not token into account
and it assumes that only
signed, unsigned int are
used for bitfield (Rule
6.4).

10.4 The value of a complex
expression of float type may
only be cast to narrower
floating type

Complex expression of XX
type may only be cast to
narrower floating type,
however the destination
type is XX.

ANSI C base types order
(float, double) defines that
T1 is narrower than T2 if
T2 is on the right hand of
T1 or T2 = T1.

10.5 If the bitwise operator ~ and
<< are applied to an operand
of underlying type unsigned
char or unsigned short, the
result shall be immediately
cast to the underlying type
of the operand

Bitwise [<<|~] is applied
to the operand of
underlying type [unsigned
char|unsigned short], the
result shall be immediately
cast to the underlying type.

10.6 The “U” suffix shall be
applied to all constants of
unsigned types

No explicit ’U suffix on
constants of an unsigned
type.

Warning when the type
determined from the value
and the base (octal, decimal
or hexadecimal) is unsigned
and there is no suffix u or U.

For example, when the size
of the int and long int
data types is 32 bits, the
coding rule checker will

3-32

MISRA C®:2004 Coding Rules

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

report a violation of rule
10.6 for the following line:

int a = 2147483648;

There is a difference
between decimal and
hexadecimal constants
when int and long int are
not the same size.

Pointer Type Conversion

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

11.1 Conversion shall not be
performed between a
pointer to a function and
any type other than an
integral type

Conversion shall not be
performed between a
pointer to a function and
any type other than an
integral type.

Casts and implicit
conversions involving a
function pointer.

Casts or implicit
conversions from NULL
or (void*)0 do not give any
warning.

11.2 Conversion shall not be
performed between a
pointer to an object and any
type other than an integral
type, another pointer to a
object type or a pointer to
void

Conversion shall not be
performed between a
pointer to an object and any
type other than an integral
type, another pointer to a
object type or a pointer to
void.

There is also a warning on
qualifier loss

11.3 A cast should not be
performed between a
pointer type and an integral
type

A cast should not be
performed between a
pointer type and an integral
type.

Exception on zero constant.
Extended to all conversions

3-33

3 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

11.4 A cast should not be
performed between a
pointer to object type and
a different pointer to object
type.

A cast should not be
performed between a
pointer to object type and a
different pointer to object
type.

11.5 A cast shall not be
performed that removes
any const or volatile
qualification from the
type addressed by a pointer

A cast shall not be
performed that removes
any const or volatile
qualification from the
type addressed by a pointer

Extended to all conversions

Expressions

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

12.1 Limited dependence
should be placed on C’s
operator precedence rules
in expressions

Limited dependence
should be placed on C’s
operator precedence rules
in expressions

12.2 The value of an expression
shall be the same under any
order of evaluation that the
standard permits.

• The value of ’sym’
depends on the order
of evaluation.

• The value of volatile ’sym’
depends on the order of
evaluation because of
multiple accesses.

The expression is a simple
expression of symbols
(Unlike i = i++; no detection
on tab[2] = tab[2]++;). Rule
12.2 check assumes that no
assignment in expressions
that yield a Boolean values
(rule 13.1) and the comma
operator is not used (rule
12.10).

12.2 The sizeof operator should
not be used on expressions
that contain side effects.

The sizeof operator should
not be used on expressions
that contain side effects.

No warning on volatile
accesses

3-34

MISRA C®:2004 Coding Rules

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

12.4 The right hand operand of
a logical && or || operator
shall not contain side
effects.

The right hand operand of
a logical && or || operator
shall not contain side
effects.

No warning on volatile
accesses

12.5 The operands of a logical
&& or || shall be
primary-expressions.

• operand of logical && is
not a primary expression

• operand of logical || is
not a primary expression

• The operands of a logical
&& or || shall be
primary-expressions.

During preprocessing,
violations of this rule are
detected on the expressions
in #if directives.

Allowed exception on
associatively (a && b && c),
(a || b || c).

12.6 Operands of logical
operators (&&, || and
!) should be effectively
Boolean. Expression that
are effectively Boolean
should not be used as
operands to operators other
than (&&, || or !).

• Operand of ’!’ logical
operator should be
effectively Boolean.

• Left operand of ’%s’
logical operator should
be effectively Boolean.

• Right operand of ’%s’
logical operator should
be effectively Boolean.

• %s operand of ’%s’ is
effectively Boolean.
Boolean should not be
used as operands to
operators other than
’&&’, ’||’, ’!’, ’=’, ’==’, ’!=’
and ’?:’.

The operand of a logical
operator should be a
Boolean data type.
Although the C standard
does not explicitly define
the Boolean data type,
the standard implicitly
assumes the use of the
Boolean data type.

Some operators may return
Boolean-like expressions,
for example, (var == 0).

Consider the following code:

unsigned char flag;
if (!flag)

The rule checker reports a
violation of rule 12.6:

Operand of '!' logical
operator should be
effectively Boolean.

3-35

3 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

The operand flag is not a
Boolean but an unsigned
char.

To be compliant with rule
12.6, the code must be
rewritten either as

if (!(flag != 0))

or

if (flag == 0)

The use of the option
-boolean-types may
increase or decrease
the number of warnings
generated.

12.7 Bitwise operators shall
not be applied to operands
whose underlying type is
signed

• [~/Left Shift/Right
shift/&] operator applied
on an expression whose
underlying type is signed.

• Bitwise ~ on operand of
signed underlying type
XX.

• Bitwise [<<|>>] on left
hand operand of signed
underlying type XX.

• Bitwise [& | ^] on two
operands of s

The underlying type for an
integer is signed when:

• it does not have a u or U
suffix

• it is small enough to
fit into a 64 bits signed
number

3-36

MISRA C®:2004 Coding Rules

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

12.8 The right hand operand of
a shift operator shall lie
between zero and one less
than the width in bits of the
underlying type of the left
hand operand.

• shift amount is negative

• shift amount is bigger
than 64

• Bitwise [<< >>] count out
of range [0 ..X] (width of
the underlying type XX
of the left hand operand
- 1)..

The numbers that
are manipulated in
preprocessing directives
are 64 bits wide so that
valid shift range is between
0 and 63

Check is also extended
onto bitfields with the field
width or the width of the
base type when it is within
a complex expression

12.9 The unary minus operator
shall not be applied to
an expression whose
underlying type is unsigned.

• Unary - on operand of
unsigned underlying type
XX.

• Minus operator applied
to an expression whose
underlying type is
unsigned

The underlying type for an
integer is signed when:

• it does not have a u or U
suffix

• it is small enough to
fit into a 64 bits signed
number

12.10 The comma operator shall
not be used.

The comma operator shall
not be used.

12.11 Evaluation of constant
unsigned expression should
not lead to wraparound.

Evaluation of constant
unsigned integer
expressions should not
lead to wrap-around.

3-37

3 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

12.12 The underlying bit
representations of
floating-point values shall
not be used.

The underlying bit
representations of
floating-point values shall
not be used.

Warning when:

• A float pointer is cast
as a pointer to another
data type. Casting a float
pointer as a pointer to
void does not generate a
warning.

• A float is packed with
another data type. For
example:

union {
float f;
int i;

}

12.13 The increment (++) and
decrement (--) operators
should not be mixed with
other operators in an
expression

The increment (++) and
decrement (--) operators
should not be mixed with
other operators in an
expression

Warning when ++ or --
operators are not used
alone.

Control Statement Expressions

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

13.1 Assignment operators shall
not be used in expressions
that yield Boolean values.

Assignment operators shall
not be used in expressions
that yield Boolean values.

13.2 Tests of a value against zero
should be made explicit,

Tests of a value against zero
should be made explicit,

No warning is given on
integer constants. Example:
if (2)

3-38

MISRA C®:2004 Coding Rules

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

unless the operand is
effectively Boolean

unless the operand is
effectively Boolean

The use of the option
-boolean-types may
increase or decrease
the number of warnings
generated.

13.3 Floating-point expressions
shall not be tested for
equality or inequality.

Floating-point expressions
shall not be tested for
equality or inequality.

Warning on directs tests
only.

13.4 The controlling expression
of a for statement shall
not contain any objects of
floating type

The controlling expression
of a for statement shall
not contain any objects of
floating type

If for index is a variable
symbol, checked that it is
not a float.

13.5 The three expressions of
a for statement shall be
concerned only with loop
control

• 1st expression should be
an assignment.

• Bad type for loop counter
(XX).

• 2nd expression should be
a comparison.

• 2nd expression should be
a comparison with loop
counter (XX).

• 3rd expression should be
an assignment of loop
counter (XX).

• 3rd expression: assigned
variable should be the
loop counter (XX).

• The following kinds of for
loops are allowed:

Checked if the for loop
index (V) is a variable
symbol; checked if V is
the last assigned variable
in the first expression
(if present). Checked
if, in first expression, if
present, is assignment
of V; checked if in 2nd
expression, if present,
must be a comparison
of V; Checked if in 3rd
expression, if present, must
be an assignment of V.

3-39

3 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

(a) all three expressions
shall be present;

(b) the 2nd and 3rd
expressions shall be
present with prior
initialization of the
loop counter;

(c) all three expressions
shall be empty for a
deliberate infinite loop.

13.6 Numeric variables being
used within a for loop for
iteration counting should
not be modified in the body
of the loop.

Numeric variables being
used within a for loop for
iteration counting should
not be modified in the body
of the loop.

Detect only direct
assignments if the for
loop index is known and if
it is a variable symbol.

13.7 Boolean operations whose
results are invariant shall
not be permitted

• Boolean operations
whose results are
invariant shall not be
permitted. Expression is
always true.

• Boolean operations
whose results are
invariant shall not be
permitted. Expression is
always false.

• Boolean operations
whose results are
invariant shall not be
permitted.

During compilation, check
comparisons with at least
one constant operand.

3-40

MISRA C®:2004 Coding Rules

Control Flow

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

14.1 There shall be no
unreachable code.

There shall be no
unreachable code.

14.2 All non-null statements
shall either have at lest
one side effect however
executed, or cause control
flow to change

• All non-null statements
shall either:

• have at lest one side
effect however executed,
or

• cause control flow to
change

14.3 All non-null statements
shall either

• have at lest one side effect
however executed, or

• cause control flow to
change

A null statement shall
appear on a line by itself

We assume that a ’;’ is a
null statement when it is
the first character on a line
(excluding comments). The
rule is violated when:

• there are some comments
before it on the same line.

• there is a comment
immediately after it

• there is something else
than a comment after the
’;’ on the same line.

14.4 The goto statement shall
not be used.

The goto statement shall
not be used.

14.5 The continue statement
shall not be used.

The continue statement
shall not be used.

14.6 For any iteration statement
there shall be at most one
break statement used for
loop termination

For any iteration statement
there shall be at most one
break statement used for
loop termination

3-41

3 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

14.7 A function shall have a
single point of exit at the
end of the function

A function shall have a
single point of exit at the
end of the function

14.8 The statement forming the
body of a switch, while, do
while or for statement shall
be a compound statement

• The body of a do while
statement shall be a
compound statement.

• The body of a for
statement shall be a
compound statement.

• The body of a switch
statement shall be a
compound statement

14.9 An if (expression) construct
shall be followed by a
compound statement.
The else keyword shall
be followed by either a
compound statement, or
another if statement

• An if (expression)
construct shall be
followed by a compound
statement.

• The else keyword shall
be followed by either a
compound statement, or
another if statement

14.10 All if else if constructs
should contain a final else
clause.

All if else if constructs
should contain a final else
clause.

3-42

MISRA C®:2004 Coding Rules

Switch Statements

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

15.0 Unreachable code is
detected between switch
statement and first case.

Note This is not a MISRA
C2004 rule.

switch statements syntax
normative restrictions.

Warning on declarations or
any statements before the
first switch case.

Warning on label or jump
statements in the body of
switch cases.

On the following example,
the rule is displayed in the
log file at line 3:

1 ...
2 switch(index) {
3 var = var + 1;
// RULE 15.0
// violated
4case 1: ...

The code between switch
statement and first case is
checked as dead code by
Polyspace. It follows ANSI
standard behavior.

15.1 A switch label shall only
be used when the most
closely-enclosing compound
statement is the body of a
switch statement

A switch label shall only
be used when the most
closely-enclosing compound
statement is the body of a
switch statement

15.2 An unconditional break
statement shall terminate
every non-empty switch
clause

An unconditional break
statement shall terminate
every non-empty switch
clause

Warning for each
non-compliant case clause.

3-43

3 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

15.3 The final clause of a switch
statement shall be the
default clause

The final clause of a switch
statement shall be the
default clause

15.4 A switch expression should
not represent a value that
is effectively Boolean

A switch expression should
not represent a value that
is effectively Boolean

The use of the option
-boolean-types may
increase the number of
warnings generated.

15.5 Every switch statement
shall have at least one case
clause

Every switch statement
shall have at least one case
clause

Functions

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

16.1 Functions shall not be
defined with variable
numbers of arguments.

Function XX should not be
defined as varargs.

16.2 Functions shall not call
themselves, either directly
or indirectly.

Function %s should not call
itself.

Done by Polyspace software
(Call graph in the Results
Manager perspective gives
the information). Polyspace
also checks that partially
during compilation phase.

16.3 Identifiers shall be given
for all of the parameters
in a function prototype
declaration.

Identifiers shall be given
for all of the parameters
in a function prototype
declaration.

Assumes Rule 8.6 is not
violated.

16.4 The identifiers used in the
declaration and definition of
a function shall be identical.

The identifiers used in the
declaration and definition of
a function shall be identical.

Assumes that rules 8.8,
8.1 and 16.3 are not
violated. All occurrences
are detected.

3-44

MISRA C®:2004 Coding Rules

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

16.5 Functions with no
parameters shall be
declared with parameter
type void.

Functions with no
parameters shall be
declared with parameter
type void.

Definitions are also
checked.

16.6 The number of arguments
passed to a function shall
match the number of
parameters.

• Too many arguments to
XX.

• Insufficient number of
arguments to XX.

Assumes that rule 8.1 is not
violated.

16.7 A pointer parameter in a
function prototype should
be declared as pointer to
const if the pointer is
not used to modify the
addressed object.

Pointer parameter in a
function prototype should
be declared as pointer to
const if the pointer is
not used to modify the
addressed object.

Warning if a non-const
pointer parameter is either
not used to modify the
addressed object or is
passed to a call of a function
that is declared with a
const pointer parameter.

16.8 All exit paths from a
function with non-void
return type shall have an
explicit return statement
with an expression.

Missing return value for
non-void function XX.

Warning when a non-void
function is not terminated
with an unconditional
return with an expression.

16.9 A function identifier shall
only be used with either
a preceding &, or with a
parenthesized parameter
list, which may be empty.

Function identifier XX
should be preceded by a &
or followed by a parameter
list.

16.10 If a function returns error
information, then that error
information shall be tested.

If a function returns error
information, then that error
information shall be tested.

Warning if a non-void
function is called and
the returned value is
ignored.No warning if the
result of the call is cast to
void.

No check performed for
calls of memcpy, memmove,

3-45

3 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

memset, strcpy, strncpy,
strcat, or strncat.

Pointers and Arrays

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

17.1 Pointer arithmetic shall
only be applied to pointers
that address an array or
array element.

Pointer arithmetic shall
only be applied to pointers
that address an array or
array element.

17.2 Pointer subtraction shall
only be applied to pointers
that address elements of
the same array

Pointer subtraction shall
only be applied to pointers
that address elements of
the same array.

17.3 >, >=, <, <= shall not be
applied to pointer types
except where they point to
the same array.

>, >=, <, <= shall not be
applied to pointer types
except where they point to
the same array.

17.4 Array indexing shall be the
only allowed form of pointer
arithmetic.

Array indexing shall be the
only allowed form of pointer
arithmetic.

Warning on operations on
pointers. (p+I, I+p and p-I,
where p is a pointer and I
an integer).

17.5 A type should not contain
more than 2 levels of pointer
indirection

A type should not contain
more than 2 levels of pointer
indirection

17.6 The address of an object
with automatic storage
shall not be assigned to
an object that may persist
after the object has ceased
to exist.

Pointer to a parameter is an
illegal return value. Pointer
to a local is an illegal return
value.

Warning when assigning
address to a global variable,
returning a local variable
address, or returning a
parameter address.

3-46

MISRA C®:2004 Coding Rules

Structures and Unions

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

18.1 All structure or union types
shall be complete at the end
of a translation unit.

All structure or union types
shall be complete at the end
of a translation unit.

Warning for all incomplete
declarations of structs or
unions.

18.2 An object shall not be
assigned to an overlapping
object.

• An object shall not
be assigned to an
overlapping object.

• Destination and source of
XX overlap, the behavior
is undefined.

18.4 Unions shall not be used Unions shall not be used.

Preprocessing Directives

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

19.1 #include statements in a
file shall only be preceded
by other preprocessors
directives or comments

A message is displayed
when a #include directive
is preceded by other
things than preprocessor
directives, comments,
spaces or “new lines”.

19.2 Nonstandard characters
should not occur in header
file names in #include
directives

• A message is displayed
on characters ’, \, " or
/* between < and > in
#include <filename>

• A message is displayed
on characters ’, \or
/* between " and " in
#include "filename"

3-47

3 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

19.3 The #include directive shall
be followed by either a
<filename> or "filename"
sequence.

• ’#include’ expects
"FILENAME" or
<FILENAME>

• ’#include_next’ expects
"FILENAME" or
<FILENAME>

19.4 C macros shall only expand
to a braced initializer, a
constant, a parenthesized
expression, a type qualifier,
a storage class specifier, or
a do-while-zero construct.

Macro ’<name>’ does not
expand to a compliant
construct.

We assume that a macro
definition does not violate
this rule when it expands
to:

• a braced construct (not
necessarily an initializer)

• a parenthesized
construct (not necessarily
an expression)

• a number

• a character constant

• a string constant (can
be the result of the
concatenation of string
field arguments and
literal strings)

• the following keywords:
typedef, extern, static,
auto, register, const,
volatile, __asm__ and
__inline__

• a do-while-zero construct

3-48

MISRA C®:2004 Coding Rules

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

19.5 Macros shall not be #defined
and #undefd within a block.

• Macros shall not be
#defined within a block.

• Macros shall not be
#undef’d within a block.

19.6 #undef shall not be used. #undef shall not be used.

19.7 A function should be used
in preference to a function
like-macro.

Message on all function-like
macros expansions

19.8 A function-like macro shall
not be invoked without all
of its arguments

• arguments given to
macro ’<name>’

• macro ’<name>’ used
without args.

• macro ’<name>’ used
with just one arg.

• macro ’<name>’
used with too many
(<number>) args.

19.9 Arguments to a
function-like macro shall
not contain tokens that
look like preprocessing
directives.

Macro argument shall not
look like a preprocessing
directive.

This rule is detected as
violated when the ’#’
character appears in a
macro argument (outside
a string or character
constant)

3-49

3 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

19.10 In the definition of a
function-like macro each
instance of a parameter
shall be enclosed in
parentheses unless it is
used as the operand of # or
##.

Parameter instance shall be
enclosed in parentheses.

If x is a macro parameter,
the following instances of
x as an operand of the #
and ## operators do not
generate a warning: #x,
##x, and x##. Otherwise,
parentheses are required
around x.

The software does not
generate a warning if a
parameter is reused as
an argument of a function
or function-like macro.
For example, consider a
parameter x. The software
does not generate a warning
if x appears as (x) or (x, or
,x) or ,x,.

19.11 All macro identifiers in
preprocessor directives
shall be defined before use,
except in #ifdef and #ifndef
preprocessor directives and
the defined() operator.

’<name>’ is not defined.

19.12 There shall be at most one
occurrence of the # or ##
preprocessor operators in a
single macro definition.

More than one occurrence
of the # or ## preprocessor
operators.

19.13 The # and ## preprocessor
operators should not be
used

Message on definitions
of macros using # or ##
operators

3-50

MISRA C®:2004 Coding Rules

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

19.14 The defined preprocessor
operator shall only be used
in one of the two standard
forms.

’defined’ without an
identifier.

19.15 Precautions shall be taken
in order to prevent the
contents of a header file
being included twice.

Precautions shall be taken
in order to prevent multiple
inclusions.

When a header file is
formatted as:

#ifndef <control macro>
#define <control macro>
<contents> #endif

or:

#ifdef <control macro>
#error ...
#else
#define <control macro>
<contents> #endif

it is assumed that
precautions have been
taken to prevent multiple
inclusions. Otherwise, a
violation of this MISRA rule
is detected.

3-51

3 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

19.16 Preprocessing directives
shall be syntactically
meaningful even
when excluded by the
preprocessor.

directive is not syntactically
meaningful.

19.17 All #else, #elif and #endif
preprocessor directives
shall reside in the same file
as the #if or #ifdef directive
to which they are related.

• ’#elif’ not within a
conditional.

• ’#else’ not within a
conditional.

• ’#elif’ not within a
conditional.

• ’#endif’ not within a
conditional.

• unbalanced ’#endif’.

• unterminated ’#if’
conditional.

• unterminated ’#ifdef’
conditional.

• unterminated ’#ifndef’
conditional.

Standard Libraries

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

20.1 Reserved identifiers,
macros and functions in
the standard library, shall

• The macro ’<name> shall
not be redefined.

3-52

MISRA C®:2004 Coding Rules

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

not be defined, redefined or
undefined. • The macro ’<name> shall

not be undefined.

20.2 The names of standard
library macros, objects
and functions shall not be
reused.

Identifier XX should not be
used.

In case a macro whose name
corresponds to a standard
library macro, object or
function is defined, the
rule that is detected as
violated is 20.1. Tentative
of definitions are considered
as definitions.

20.3 The validity of values
passed to library functions
shall be checked.

Validity of values passed to
library functions shall be
checked

Warning for argument in
library function call if the
following are all true:
• Argument is a local
variable

• Local variable is not
tested between last
assignment and call to
the library function

• Library function is a
common mathematical
function

• Corresponding
parameter of the library
function has a restricted
input domain.

The library function can be
one of the following : sqrt,
tan, pow, log, log10, fmod,
acos, asin, acosh, atanh,
or atan2.

3-53

3 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

20.4 Dynamic heap memory
allocation shall not be used.

• The macro ’<name> shall
not be used.

• Identifier XX should not
be used.

In case the dynamic heap
memory allocation functions
are actually macros and the
macro is expanded in the
code, this rule is detected as
violated. Assumes rule 20.2
is not violated.

20.5 The error indicator errno
shall not be used

The error indicator errno
shall not be used

Assumes that rule 20.2 is
not violated

20.6 The macro offsetof, in
library <stddef.h>, shall not
be used.

• The macro ’<name> shall
not be used.

• Identifier XX should not
be used.

Assumes that rule 20.2 is
not violated

20.7 The setjmp macro and the
longjmp function shall not
be used.

• The macro ’<name> shall
not be used.

• Identifier XX should not
be used.

In case the longjmp function
is actually a macro and the
macro is expanded in the
code, this rule is detected as
violated. Assumes that rule
20.2 is not violated

20.8 The signal handling
facilities of <signal.h>
shall not be used.

• The macro ’<name> shall
not be used.

• Identifier XX should not
be used.

In case some of the signal
functions are actually
macros and are expanded
in the code, this rule
is detected as violated.
Assumes that rule 20.2 is
not violated

20.9 The input/output library
<stdio.h> shall not be used
in production code.

• The macro ’<name> shall
not be used.

• Identifier XX should not
be used.

In case the input/output
library functions are
actually macros and are
expanded in the code, this
rule is detected as violated.
Assumes that rule 20.2 is
not violated

3-54

MISRA C®:2004 Coding Rules

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

20.10 The library functions atof,
atoi and toll from library
<stdlib.h> shall not be used.

• The macro ’<name> shall
not be used.

• Identifier XX should not
be used.

In case the atof, atoi and
atoll functions are actually
macros and are expanded,
this rule is detected as
violated. Assumes that rule
20.2 is not violated

20.11 The library functions abort,
exit, getenv and system
from library <stdlib.h>
shall not be used.

• The macro ’<name> shall
not be used.

• Identifier XX should not
be used.

In case the abort, exit,
getenv and system functions
are actually macros and
are expanded, this rule
is detected as violated.
Assumes that rule 20.2 is
not violated

20.12 The time handling functions
of library <time.h> shall not
be used.

• The macro ’<name> shall
not be used.

• Identifier XX should not
be used.

In case the time handling
functions are actually
macros and are expanded,
this rule is detected as
violated. Assumes that rule
20.2 is not violated

Runtime Failures

N. MISRA Definition Messages in report file Detailed Polyspace
Specification

21.1 Minimization of runtime
failures shall be ensured by
the use of at least one of:

• static verification
tools/techniques;

• dynamic verification
tools/techniques;

• explicit coding of checks
to handle runtime faults.

Done by Polyspace

3-55

3 Coding Rule Sets and Concepts

MISRA C:2004 Rules Not Checked
The Polyspace coding rules checker does not check the following MISRA
C:2004 coding rules. These rules cannot be enforced because they are outside
the scope of Polyspace software. They may concern documentation, dynamic
aspects, or functional aspects of MISRA rules. The “Comments” column
describes the reason each rule is not checked.

Environment

Rule Description Comments

1.2
(Required)

No reliance shall be placed
on undefined or unspecified
behavior

Not statically checkable
unless the data dynamic
properties is taken into
account

1.3
(Required)

Multiple compilers and/or
languages shall only be
used if there is a common
defined interface standard
for object code to which the
language/compilers/assemblers
conform.

It is a process rule method.

1.4
(Required)

The
compiler/linker/Identifiers
(internal and external)
shall not rely on
significance of more than
31 characters. Furthermore
the compiler/linker shall be
checked to ensure that 31
character significance and
case sensitivity are supported
for external identifiers.

The documentation of
compiler must be checked.

1.5
(Advisory)

Floating point
implementations should
comply with a defined floating
point standard.

The documentation of
compiler must be checked as
this implementation is done
by the compiler

3-56

MISRA C®:2004 Coding Rules

Language Extensions

Rule Description Comments

2.4
(Advisory)

Sections of code should not be
“commented out”

It might be some pseudo code
or code that does not compile
inside a comment.

Documentation

Rule Description Comments

3.1
(Required)

All usage of
implementation-defined
behavior shall be documented.

The documentation of
compiler must be checked.
Error detection is based
on undefined behavior,
according to choices made
for implementation-
defined constructions.
Documentation can not
be checked.

3.2
(Required)

The character set and the
corresponding encoding shall
be documented.

The documentation of
compiler must be checked.

3.3
(Advisory)

The implementation of
integer division in the
chosen compiler should be
determined, documented and
taken into account.

The documentation of
compiler must be checked.

3-57

3 Coding Rule Sets and Concepts

Rule Description Comments

3.5
(Required)

The implementation-defined
behavior and packing of
bitfields shall be documented
if being relied upon.

The documentation of
compiler must be checked.

3.6
(Required)

All libraries used in
production code shall be
written to comply with the
provisions of this document,
and shall have been subject to
appropriate validation.

The documentation of
compiler must be checked.

Structures and Unions

Rule Description Comments

18.3
(Required)

An area of memory shall
not be reused for unrelated
purposes.

"purpose" is functional design
issue.

3-58

Polyspace® MISRA® C++ Checker

Polyspace MISRA C++ Checker
The Polyspace MISRA C++ checker helps you comply with the MISRA
C++:2008 coding standard.9

When MISRA C++ rules are violated, the Polyspace MISRA C++ checker
enables Polyspace software to provide messages with information about the
rule violations. Most messages are reported during the compile phase of an
analysis. The MISRA C++ checker can check 185 of the 228 MISRA C++
coding rules.

There are subsets of MISRA C++ coding rules that can have a direct or
indirect impact on the selectivity (reliability percentage) of your results. When
you set up rule checking, you can select these subsets directly. These subsets
are defined in “Software Quality Objective Subsets (C++)” on page 3-60.

Note The Polyspace MISRA C++ checker is based on MISRA C++:2008 –
“Guidelines for the use of the C++ language in critical systems." For more
information on these coding standards, see http://www.misra-cpp.com.

9. MISRA is a registered trademark of MISRA Ltd., held on behalf of the MISRA Consortium.

3-59

http://www.misra-cpp.com/

3 Coding Rule Sets and Concepts

Software Quality Objective Subsets (C++)

In this section...

“SQO Subset 1 – Direct Impact on Selectivity” on page 3-60

“SQO Subset 2 – Indirect Impact on Selectivity” on page 3-63

SQO Subset 1 – Direct Impact on Selectivity
The following set of coding rules will typically improve the selectivity of your
results.

MISRA C++
Rule

Description

2-10-2 Identifiers declared in an inner scope shall not hide an
identifier declared in an outer scope.

3-1-3 When an array is declared, its size shall either be stated
explicitly or defined implicitly by initialization.

3-3-2 The One Definition Rule shall not be violated.

3-9-3 The underlying bit representations of floating-point values
shall not be used.

5-0-15 Array indexing shall be the only form of pointer arithmetic.

5-0-18 >, >=, <, <= shall not be applied to objects of pointer type,
except where they point to the same array.

5-0-19 The declaration of objects shall contain no more than two
levels of pointer indirection.

5-2-8 An object with integer type or pointer to void type shall not
be converted to an object with pointer type.

5-2-9 A cast should not convert a pointer type to an integral type.

6-2-2 Floating-point expressions shall not be directly or indirectly
tested for equality or inequality.

6-5-1 A for loop shall contain a single loop-counter which shall
not have floating type.

3-60

Software Quality Objective Subsets (C++)

MISRA C++
Rule

Description

6-5-2 If loop-counter is not modified by -- or ++, then, within
condition, the loop-counter shall only be used as an operand
to <=, <, > or >=.

6-5-3 The loop-counter shall not be modified within condition or
statement.

6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or
+=n ; where n remains constant for the duration of the loop.

6-6-1 Any label referenced by a goto statement shall be declared
in the same block, or in a block enclosing the goto statement.

6-6-2 The goto statement shall jump to a label declared later in
the same function body.

6-6-4 For any iteration statement there shall be no more than one
break or goto statement used for loop termination.

6-6-5 A function shall have a single point of exit at the end of the
function.

7-5-1 A function shall not return a reference or a pointer to an
automatic variable (including parameters), defined within
the function.

7-5-2 The address of an object with automatic storage shall not be
assigned to another object that may persist after the first
object has ceased to exist.

7-5-4 Functions should not call themselves, either directly or
indirectly.

8-4-1 Functions shall not be defined using the ellipsis notation.

9-5-1 Unions shall not be used.

10-1-2 A base class shall only be declared virtual if it is used in
a diamond hierarchy.

10-1-3 An accessible base class shall not be both virtual and
nonvirtual in the same hierarchy.

10-3-1 There shall be no more than one definition of each virtual
function on each path through the inheritance hierarchy.

3-61

3 Coding Rule Sets and Concepts

MISRA C++
Rule

Description

10-3-2 Each overriding virtual function shall be declared with the
virtual keyword.

10-3-3 A virtual function shall only be overridden by a pure virtual
function if it is itself declared as pure virtual.

15-0-3 Control shall not be transferred into a try or catch block
using a goto or a switch statement.

15-1-3 An empty throw (throw;) shall only be used in the compound-
statement of a catch handler.

15-3-3 Handlers of a function-try-block implementation of a class
constructor or destructor shall not reference non-static
members from this class or its bases.

15-3-5 A class type exception shall always be caught by reference.

15-3-6 Where multiple handlers are provided in a single try-catch
statement or function-try-block for a derived class and
some or all of its bases, the handlers shall be ordered
most-derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch
statement or function-try-block, any ellipsis (catch-all)
handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then
all declarations of the same function (in other translation
units) shall be declared with the same set of type-ids.

15-5-1 A class destructor shall not exit with an exception.

15-5-2 Where a function’s declaration includes an
exception-specification, the function shall only be
capable of throwing exceptions of the indicated type(s).

18-4-1 Dynamic heap memory allocation shall not be used.

3-62

Software Quality Objective Subsets (C++)

SQO Subset 2 – Indirect Impact on Selectivity
Good design practices generally lead to less code complexity, which can
improve the selectivity of your results. The following set of coding rules may
help to address design issues that impact selectivity.

Note When you specify SQO-subset2 for your MISRA C++ rules
configuration, the software checks the rules listed in SQO Subset 1 and SQO
Subset 2.

MISRA C++
Rule

Description

2-10-2 Identifiers declared in an inner scope shall not hide an
identifier declared in an outer scope.

3-1-3 When an array is declared, its size shall either be stated
explicitly or defined implicitly by initialization.

3-3-2 If a function has internal linkage then all re-declarations
shall include the static storage class specifier.

3-4-1 An identifier declared to be an object or type shall be
defined in a block that minimizes its visibility.

3-9-2 typedefs that indicate size and signedness should be used
in place of the basic numerical types.

3-9-3 The underlying bit representations of floating-point values
shall not be used.

4-5-1 Expressions with type bool shall not be used as operands
to built-in operators other than the assignment operator =,
the logical operators &&, ||, !, the equality operators ==
and !=, the unary & operator, and the conditional operator.

5-0-1 The value of an expression shall be the same under any
order of evaluation that the standard permits.

5-0-2 Limited dependence should be placed on C++ operator
precedence rules in expressions.

5-0-7 There shall be no explicit floating-integral conversions of a
cvalue expression.

3-63

3 Coding Rule Sets and Concepts

MISRA C++
Rule

Description

5-0-8 An explicit integral or floating-point conversion shall
not increase the size of the underlying type of a cvalue
expression.

5-0-9 An explicit integral conversion shall not change the
signedness of the underlying type of a cvalue expression.

5-0-10 If the bitwise operators ~ and << are applied to an operand
with an underlying type of unsigned char or unsigned short,
the result shall be immediately cast to the underlying type
of the operand.

5-0-13

5-0-15 Array indexing shall be the only form of pointer arithmetic.

5-0-18 >, >=, <, <= shall not be applied to objects of pointer type,
except where they point to the same array.

5-0-19 The declaration of objects shall contain no more than two
levels of pointer indirection.

5-2-1 Each operand of a logical && or || shall be a postfix -
expression.

5-2-2 A pointer to a virtual base class shall only be cast to a
pointer to a derived class by means of dynamic_cast.

5-2-5 A cast shall not remove any const or volatile qualification
from the type of a pointer or reference.

5-2-6 A cast shall not convert a pointer to a function to any other
pointer type, including a pointer to function type.

5-2-7 An object with pointer type shall not be converted to an
unrelated pointer type, either directly or indirectly.

5-2-8 An object with integer type or pointer to void type shall not
be converted to an object with pointer type.

5-2-9 A cast should not convert a pointer type to an integral type.

5-2-11 The comma operator, && operator and the || operator
shall not be overloaded.

3-64

Software Quality Objective Subsets (C++)

MISRA C++
Rule

Description

5-3-2 The unary minus operator shall not be applied to an
expression whose underlying type is unsigned.

5-3-3 The unary & operator shall not be overloaded.

5-18-1 The comma operator shall not be used.

6-2-1 Assignment operators shall not be used in sub-expressions.

6-2-2 Floating-point expressions shall not be directly or indirectly
tested for equality or inequality.

6-3-1 The statement forming the body of a switch, while, do ...
while or for statement shall be a compound statement.

6-4-2 All if ... else if constructs shall be terminated with an else
clause.

6-4-6 The final clause of a switch statement shall be the
default-clause.

6-5-1 A for loop shall contain a single loop-counter which shall
not have floating type.

6-5-2 If loop-counter is not modified by -- or ++, then, within
condition, the loop-counter shall only be used as an operand
to <=, <, > or >=.

6-5-3 The loop-counter shall not be modified within condition
or statement.

6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or
+=n ; where n remains constant for the duration of the loop.

6-6-1 Any label referenced by a goto statement shall be declared
in the same block, or in a block enclosing the goto
statement.

6-6-2 The goto statement shall jump to a label declared later in
the same function body.

6-6-4 For any iteration statement there shall be no more than
one break or goto statement used for loop termination.

3-65

3 Coding Rule Sets and Concepts

MISRA C++
Rule

Description

6-6-5 A function shall have a single point of exit at the end of
the function.

7-5-1 A function shall not return a reference or a pointer to an
automatic variable (including parameters), defined within
the function.

7-5-2 The address of an object with automatic storage shall not
be assigned to another object that may persist after the
first object has ceased to exist.

7-5-4 Functions should not call themselves, either directly or
indirectly.

8-4-1 Functions shall not be defined using the ellipsis notation.

8-4-3 All exit paths from a function with non- void return type
shall have an explicit return statement with an expression.

8-4-4 A function identifier shall either be used to call the function
or it shall be preceded by &.

8-5-2 Braces shall be used to indicate and match the structure in
the non- zero initialization of arrays and structures.

8-5-3 In an enumerator list, the = construct shall not be used to
explicitly initialize members other than the first, unless all
items are explicitly initialized.

10-1-2 A base class shall only be declared virtual if it is used in
a diamond hierarchy.

10-1-3 An accessible base class shall not be both virtual and
nonvirtual in the same hierarchy.

10-3-1 There shall be no more than one definition of each virtual
function on each path through the inheritance hierarchy.

10-3-2 Each overriding virtual function shall be declared with the
virtual keyword.

10-3-3 A virtual function shall only be overridden by a pure virtual
function if it is itself declared as pure virtual.

11-0-1 Member data in non- POD class types shall be private.

3-66

Software Quality Objective Subsets (C++)

MISRA C++
Rule

Description

12-1-1 An object’s dynamic type shall not be used from the body of
its constructor or destructor.

12-8-2 The copy assignment operator shall be declared protected
or private in an abstract class.

15-0-3 Control shall not be transferred into a try or catch block
using a goto or a switch statement.

15-1-3 An empty throw (throw;) shall only be used in the
compound- statement of a catch handler.

15-3-3 Handlers of a function-try-block implementation of a class
constructor or destructor shall not reference non-static
members from this class or its bases.

15-3-5 A class type exception shall always be caught by reference.

15-3-6 Where multiple handlers are provided in a single try-catch
statement or function-try-block for a derived class and
some or all of its bases, the handlers shall be ordered
most-derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch
statement or function-try-block, any ellipsis (catch-all)
handler shall occur last.

15-4-1 If a function is declared with an exception-specification,
then all declarations of the same function (in other
translation units) shall be declared with the same set of
type-ids.

15-5-1 A class destructor shall not exit with an exception.

15-5-2 Where a function’s declaration includes an
exception-specification, the function shall only be
capable of throwing exceptions of the indicated type(s).

16-0-5 Arguments to a function-like macro shall not contain
tokens that look like preprocessing directives.

3-67

3 Coding Rule Sets and Concepts

MISRA C++
Rule

Description

16-0-6 In the definition of a function-like macro, each instance of
a parameter shall be enclosed in parentheses, unless it is
used as the operand of # or ##.

16-0-7 Undefined macro identifiers shall not be used in #if or #elif
preprocessor directives, except as operands to the defined
operator.

16-2-2 C++ macros shall only be used for: include guards, type
qualifiers, or storage class specifiers.

16-3-1 There shall be at most one occurrence of the # or ##
operators in a single macro definition.

18-4-1 Dynamic heap memory allocation shall not be used.

3-68

MISRA® C++ Coding Rules

MISRA C++ Coding Rules

In this section...

“Supported MISRA C++ Coding Rules” on page 3-69

“MISRA C++ Rules Not Checked” on page 3-89

Supported MISRA C++ Coding Rules

• “Language Independent Issues” on page 3-70

• “General” on page 3-70

• “Lexical Conventions” on page 3-70

• “Basic Concepts” on page 3-72

• “Standard Conversions” on page 3-73

• “Expressions” on page 3-74

• “Statements” on page 3-77

• “Declarations” on page 3-80

• “Declarators” on page 3-81

• “Classes” on page 3-82

• “Derived Classes” on page 3-82

• “Member Access Control” on page 3-83

• “Special Member Functions” on page 3-83

• “Templates” on page 3-84

• “Exception Handling” on page 3-85

• “Preprocessing Directives” on page 3-86

• “Library Introduction” on page 3-88

• “Language Support Library” on page 3-88

• “Diagnostic Library” on page 3-89

• “Input/output Library” on page 3-89

3-69

3 Coding Rule Sets and Concepts

Language Independent Issues

N. MISRA Definition Comments

0-1-1 A project shall not contain unreachable
code.

0-1-2 A project shall not contain infeasible
paths.

0-1-7 The value returned by a function having
a non- void return type that is not an
overloaded operator shall always be used.

0-1-10 Every defined function shall be called at
least once.

Detects if static functions are not called
in their translation unit. Other cases are
detected by the software.

General

N. MISRA Definition Comments

1-0-1 All code shall conform to ISO/IEC
14882:2003 "The C++ Standard
Incorporating Technical Corrigendum 1".

Lexical Conventions

N. MISRA Definition Comments

2-3-1 Trigraphs shall not be used.

2-5-1 Digraphs should not be used.

2-7-1 The character sequence /* shall not be
used within a C-style comment.

This rule cannot be annotated in the
source code.

2-10-1 Different identifiers shall be
typographically unambiguous.

3-70

MISRA® C++ Coding Rules

N. MISRA Definition Comments

2-10-2 Identifiers declared in an inner scope
shall not hide an identifier declared in an
outer scope.

No detection for logical scopes: fields or
member functions hiding outer scopes
identifiers or hiding ancestors members.

2-10-3 A typedef name (including qualification, if
any) shall be a unique identifier.

No detection across namespaces.

2-10-4 A class, union or enum name (including
qualification, if any) shall be a unique
identifier.

No detection across namespaces.

2-10-5 The identifier name of a non-member
object or function with static storage
duration should not be reused.

For functions the detection is only on the
definition where there is a declaration.

2-10-6 If an identifier refers to a type, it shall
not also refer to an object or a function in
the same scope.

If the identifier is a function and the
function is both declared and defined then
the violation is reported only once.

2-13-1 Only those escape sequences that are
defined in ISO/IEC 14882:2003 shall be
used.

2-13-2 Octal constants (other than zero) and
octal escape sequences (other than "\0")
shall not be used.

2-13-3 A "U" suffix shall be applied to all octal or
hexadecimal integer literals of unsigned
type.

2-13-4 Literal suffixes shall be upper case.

2-13-5 Narrow and wide string literals shall not
be concatenated.

3-71

3 Coding Rule Sets and Concepts

Basic Concepts

N. MISRA Definition Comments

3-1-1 It shall be possible to include any header
file in multiple translation units without
violating the One Definition Rule.

3-1-2 Functions shall not be declared at block
scope.

3-1-3 When an array is declared, its size shall
either be stated explicitly or defined
implicitly by initialization.

3-2-1 All declarations of an object or function
shall have compatible types.

3-2-2 The One Definition Rule shall not be
violated.

Report type, template, and inline function
defined in source file

3-2-3 A type, object or function that is used
in multiple translation units shall be
declared in one and only one file.

3-2-4 An identifier with external linkage shall
have exactly one definition.

3-3-1 Objects or functions with external linkage
shall be declared in a header file.

3-3-2 If a function has internal linkage then all
re-declarations shall include the static
storage class specifier.

3-4-1 An identifier declared to be an object
or type shall be defined in a block that
minimizes its visibility.

3-9-1 The types used for an object, a function
return type, or a function parameter
shall be token-for-token identical in all
declarations and re-declarations.

Comparison is done between current
declaration and last seen declaration.

3-72

MISRA® C++ Coding Rules

N. MISRA Definition Comments

3-9-2 typedefs that indicate size and signedness
should be used in place of the basic
numerical types.

No detection in non-instantiated
templates.

3-9-3 The underlying bit representations of
floating-point values shall not be used.

Standard Conversions

N. MISRA Definition Comments

4-5-1 Expressions with type bool shall not be
used as operands to built-in operators
other than the assignment operator =, the
logical operators &&, ||, !, the equality
operators == and !=, the unary & operator,
and the conditional operator.

4-5-2 Expressions with type enum shall not be
used as operands to built- in operators
other than the subscript operator [],
the assignment operator =, the equality
operators == and !=, the unary & operator,
and the relational operators <, <=, >, >=.

4-5-3 Expressions with type (plain) char and
wchar_t shall not be used as operands
to built-in operators other than the
assignment operator =, the equality
operators == and !=, and the unary &
operator. N

3-73

3 Coding Rule Sets and Concepts

Expressions

N. MISRA Definition Comments

5-0-1 The value of an expression shall be the
same under any order of evaluation that
the standard permits.

5-0-2 Limited dependence should be placed
on C++ operator precedence rules in
expressions.

5-0-3 A cvalue expression shall not be implicitly
converted to a different underlying type.

Assumes that ptrdiff_t is signed integer

5-0-4 An implicit integral conversion shall not
change the signedness of the underlying
type.

Assumes that ptrdiff_t is signed integer

If the conversion is to a narrower integer
with a different sign then MISRA C++
5-0-4 takes precedence over MISRA C++
5-0-6.

5-0-5 There shall be no implicit floating-integral
conversions.

This rule takes precedence over 5-0-4 and
5-0-6 if they apply at the same time.

5-0-6 An implicit integral or floating-point
conversion shall not reduce the size of the
underlying type.

If the conversion is to a narrower integer
with a different sign then MISRA C++
5-0-4 takes precedence over MISRA C++
5-0-6.

5-0-7 There shall be no explicit floating-integral
conversions of a cvalue expression.

5-0-8 An explicit integral or floating-point
conversion shall not increase the size of
the underlying type of a cvalue expression.

5-0-9 An explicit integral conversion shall not
change the signedness of the underlying
type of a cvalue expression.

3-74

MISRA® C++ Coding Rules

N. MISRA Definition Comments

5-0-10 If the bitwise operators ~ and << are
applied to an operand with an underlying
type of unsigned char or unsigned short,
the result shall be immediately cast to the
underlying type of the operand.

5-0-11 The plain char type shall only be used for
the storage and use of character values.

For numeric data, use a type which has
explicit signedness.

5-0-12 Signed char and unsigned char type shall
only be used for the storage and use of
numeric values.

5-0-14 The first operand of a conditional-operator
shall have type bool.

5-0-15 Array indexing shall be the only form of
pointer arithmetic.

Warning on operations on pointers. (p+I,
I+p and p-I, where p is a pointer and I an
integer, p[i] accepted).

5-0-18 >, >=, <, <= shall not be applied to objects
of pointer type, except where they point
to the same array.

Report when relational operator are used
on pointers types (casts ignored).

5-0-19 The declaration of objects shall contain
no more than two levels of pointer
indirection.

5-0-20 Non-constant operands to a binary bitwise
operator shall have the same underlying
type.

5-0-21 Bitwise operators shall only be applied to
operands of unsigned underlying type.

5-2-1 Each operand of a logical && or || shall
be a postfix - expression.

During preprocessing, violations of this
rule are detected on the expressions
in #if directives. Allowed exception on
associativity (a && b && c), (a || b || c).

5-2-2 A pointer to a virtual base class shall only
be cast to a pointer to a derived class by
means of dynamic_cast.

3-75

3 Coding Rule Sets and Concepts

N. MISRA Definition Comments

5-2-3 Casts from a base class to a derived class
should not be performed on polymorphic
types.

5-2-4 C-style casts (other than void casts) and
functional notation casts (other than
explicit constructor calls) shall not be
used.

5-2-5 A cast shall not remove any const or
volatile qualification from the type of a
pointer or reference.

5-2-6 A cast shall not convert a pointer to
a function to any other pointer type,
including a pointer to function type.

No violation if pointer types of operand
and target are identical.

5-2-7 An object with pointer type shall not be
converted to an unrelated pointer type,
either directly or indirectly.

"Extended to all pointer conversions
including between pointer to struct object
and pointer to type of the first member
of the struct type. Indirect conversions
through non-pointer type (e.g. int) are
not detected."

5-2-8 An object with integer type or pointer to
void type shall not be converted to an
object with pointer type.

Exception on zero constants. Objects with
pointer type include objects with pointer
to function type.

5-2-9 A cast should not convert a pointer type
to an integral type.

5-2-10 The increment (++) and decrement (--)
operators should not be mixed with other
operators in an expression.

5-2-11 The comma operator, && operator and
the || operator shall not be overloaded.

5-2-12 An identifier with array type passed as
a function argument shall not decay to a
pointer.

3-76

MISRA® C++ Coding Rules

N. MISRA Definition Comments

5-3-1 Each operand of the ! operator, the logical
&& or the logical || operators shall have
type bool.

5-3-2 The unary minus operator shall not be
applied to an expression whose underlying
type is unsigned.

5-3-3 The unary & operator shall not be
overloaded.

5-3-4 Evaluation of the operand to the sizeof
operator shall not contain side effects.

No warning on volatile accesses and
function calls

5-8-1 The right hand operand of a shift operator
shall lie between zero and one less than
the width in bits of the underlying type of
the left hand operand.

5-14-1 The right hand operand of a logical && or
|| operator shall not contain side effects.

No warning on volatile accesses and
function calls.

5-18-1 The comma operator shall not be used.

5-19-1 Evaluation of constant unsigned
integer expressions should not lead to
wrap-around.

Statements

N. MISRA Definition Comments

6-2-1 Assignment operators shall not be used
in sub-expressions.

6-2-2 Floating-point expressions shall not be
directly or indirectly tested for equality
or inequality.

3-77

3 Coding Rule Sets and Concepts

N. MISRA Definition Comments

6-2-3 Before preprocessing, a null statement
shall only occur on a line by itself; it
may be followed by a comment, provided
that the first character following the null
statement is a white - space character.

6-3-1 The statement forming the body of a
switch, while, do ... while or for statement
shall be a compound statement.

6-4-1 An if (condition) construct shall be
followed by a compound statement. The
else keyword shall be followed by either
a compound statement, or another if
statement.

6-4-2 All if ... else if constructs shall be
terminated with an else clause.

Detects also cases where the last if is in
the block of the last else (same behavior
as JSF, stricter than MISRA C). Example:
"if … else { if …{}}" raises the rule

6-4-3 A switch statement shall be a well-formed
switch statement.

Return statements are considered as
jump statements.

6-4-4 A switch-label shall only be used when
the most closely-enclosing compound
statement is the body of a switch
statement.

6-4-5 An unconditional throw or break
statement shall terminate every non -
empty switch-clause.

6-4-6 The final clause of a switch statement
shall be the default-clause.

6-4-7 The condition of a switch statement shall
not have bool type.

6-4-8 Every switch statement shall have at
least one case-clause.

3-78

MISRA® C++ Coding Rules

N. MISRA Definition Comments

6-5-1 A for loop shall contain a single
loop-counter which shall not have floating
type.

6-5-2 If loop-counter is not modified by -- or ++,
then, within condition, the loop-counter
shall only be used as an operand to <=,
<, > or >=.

6-5-3 The loop-counter shall not be modified
within condition or statement.

Detect only direct assignments if
for_index is known (see 6-5-1).

6-5-4 The loop-counter shall be modified by one
of: --, ++, -=n, or +=n ; where n remains
constant for the duration of the loop.

6-5-5 A loop-control-variable other than the
loop-counter shall not be modified within
condition or expression.

6-5-6 A loop-control-variable other than
the loop-counter which is modified in
statement shall have type bool.

6-6-1 Any label referenced by a goto statement
shall be declared in the same block, or in
a block enclosing the goto statement.

6-6-2 The goto statement shall jump to a label
declared later in the same function body.

6-6-3 The continue statement shall only be used
within a well-formed for loop.

Assumes 6.5.1 to 6.5.6: so it is
implemented only for supported 6_5_x
rules.

6-6-4 For any iteration statement there shall be
no more than one break or goto statement
used for loop termination.

6-6-5 A function shall have a single point of exit
at the end of the function.

At most one return not necessarily as last
statement for void functions.

3-79

3 Coding Rule Sets and Concepts

Declarations

N. MISRA Definition Comments

7-3-1 The global namespace shall only contain
main, namespace declarations and extern
"C" declarations.

7-3-2 The identifier main shall not be used for
a function other than the global function
main.

7-3-3 There shall be no unnamed namespaces
in header files.

7-3-4 using-directives shall not be used.

7-3-5 Multiple declarations for an identifier in
the same namespace shall not straddle a
using-declaration for that identifier.

7-3-6 using-directives and using-declarations
(excluding class scope or function scope
using-declarations) shall not be used in
header files.

7-4-2 Assembler instructions shall only be
introduced using the asm declaration.

7-4-3 Assembly language shall be encapsulated
and isolated.

7-5-1 A function shall not return a reference
or a pointer to an automatic variable
(including parameters), defined within
the function.

7-5-2 The address of an object with automatic
storage shall not be assigned to another
object that may persist after the first
object has ceased to exist.

3-80

MISRA® C++ Coding Rules

N. MISRA Definition Comments

7-5-3 A function shall not return a reference or
a pointer to a parameter that is passed by
reference or const reference.

7-5-4 Functions should not call themselves,
either directly or indirectly.

Declarators

N. MISRA Definition Comments

8-0-1 An init-declarator-list or a
member-declarator-list shall
consist of a single init-declarator or
member-declarator respectively.8-3-1 Parameters in an overriding virtual
function shall either use the same default
arguments as the function they override,
or else shall not specify any default
arguments.

8-4-1 Functions shall not be defined using the
ellipsis notation.

8-4-2 The identifiers used for the parameters
in a re-declaration of a function shall be
identical to those in the declaration.

8-4-3 All exit paths from a function with non-
void return type shall have an explicit
return statement with an expression.

8-4-4 A function identifier shall either be used
to call the function or it shall be preceded
by &.

8-5-1 All variables shall have a defined value
before they are used.

Non-initialized variable in results and
error messages for obvious cases

3-81

3 Coding Rule Sets and Concepts

N. MISRA Definition Comments

8-5-2 Braces shall be used to indicate and
match the structure in the non- zero
initialization of arrays and structures.

8-5-3 In an enumerator list, the = construct
shall not be used to explicitly initialize
members other than the first, unless all
items are explicitly initialized.

Classes

N. MISRA Definition Comments

9-3-1 const member functions shall not return
non-const pointers or references to
class-data.

Class-data for a class is restricted to all
non-static member data.

9-3-2 Member functions shall not return
non-const handles to class-data.

Class-data for a class is restricted to all
non-static member data.

9-5-1 Unions shall not be used.

9-6-2 Bit-fields shall be either bool type or an
explicitly unsigned or signed integral type.

9-6-3 Bit-fields shall not have enum type.

9-6-4 Named bit-fields with signed integer type
shall have a length of more than one bit.

Derived Classes

N. MISRA Definition Comments

10-1-1 Classes should not be derived from virtual
bases.

10-1-2 A base class shall only be declared virtual
if it is used in a diamond hierarchy.

Assumes 10.1.1 not required

3-82

MISRA® C++ Coding Rules

N. MISRA Definition Comments

10-1-3 An accessible base class shall not be
both virtual and nonvirtual in the same
hierarchy.

10-2-1 All accessible entity names within a
multiple inheritance hierarchy should be
unique.

No detection between entities of different
kinds (member functions against data
members, …).

10-3-1 There shall be no more than one definition
of each virtual function on each path
through the inheritance hierarchy.

Member functions that are virtual by
inheritance are also detected.

10-3-2 Each overriding virtual function shall be
declared with the virtual keyword.

10-3-3 A virtual function shall only be overridden
by a pure virtual function if it is itself
declared as pure virtual.

Member Access Control

N. MISRA Definition Comments

11-0-1 Member data in non- POD class types
shall be private.

Special Member Functions

N. MISRA Definition Comments

12-1-1 An object’s dynamic type shall not be
used from the body of its constructor or
destructor.

12-1-2 All constructors of a class should explicitly
call a constructor for all of its immediate
base classes and all virtual base classes.

3-83

3 Coding Rule Sets and Concepts

N. MISRA Definition Comments

12-1-3 All constructors that are callable with
a single argument of fundamental type
shall be declared explicit.

12-8-1 A copy constructor shall only initialize its
base classes and the non- static members
of the class of which it is a member.

12-8-2 The copy assignment operator shall
be declared protected or private in an
abstract class.

Templates

N. MISRA Definition Comments

14-5-2 A copy constructor shall be declared
when there is a template constructor
with a single parameter that is a generic
parameter.

14-5-3 A copy assignment operator shall be
declared when there is a template
assignment operator with a parameter
that is a generic parameter.

14-6-1 In a class template with a dependent
base, any name that may be found in that
dependent base shall be referred to using
a qualified-id or this->

14-6-2 The function chosen by overload
resolution shall resolve to a function
declared previously in the translation
unit.

14-7-3 All partial and explicit specializations for
a template shall be declared in the same
file as the declaration of their primary
template.

3-84

MISRA® C++ Coding Rules

N. MISRA Definition Comments

14-8-1 Overloaded function templates shall not
be explicitly specialized.

All specializations of overloaded
templates are rejected even if overloading
occurs after the call.

14-8-2 The viable function set for a function
call should either contain no function
specializations, or only contain function
specializations.

Exception Handling

N. MISRA Definition Comments

15-0-2 An exception object should not have
pointer type.

NULL not detected (see 15-1-2).

15-0-3 Control shall not be transferred into a try
or catch block using a goto or a switch
statement.

15-1-2 NULL shall not be thrown explicitly.

15-1-3 An empty throw (throw;) shall only be
used in the compound- statement of a
catch handler.

15-3-2 There should be at least one exception
handler to catch all otherwise unhandled
exceptions.

Detect that there is no try/catch in the
main and that the catch does not handle
all exceptions. Not detected if no "main".

15-3-3 Handlers of a function-try-block
implementation of a class constructor or
destructor shall not reference non-static
members from this class or its bases.

15-3-5 A class type exception shall always be
caught by reference.

3-85

3 Coding Rule Sets and Concepts

N. MISRA Definition Comments

15-3-6 Where multiple handlers are provided
in a single try-catch statement or
function-try-block for a derived class and
some or all of its bases, the handlers shall
be ordered most-derived to base class.

15-3-7 Where multiple handlers are provided
in a single try-catch statement or
function-try-block, any ellipsis (catch-all)
handler shall occur last.

15-4-1 If a function is declared with an
exception-specification, then all
declarations of the same function (in other
translation units) shall be declared with
the same set of type-ids.

15-5-1 A class destructor shall not exit with an
exception.

Limit detection to throw and catch that
are internals to the destructor; rethrows
are partially processed; no detections in
nested handlers.

15-5-2 Where a function’s declaration includes an
exception-specification, the function shall
only be capable of throwing exceptions of
the indicated type(s).

Limit detection to throw that are
internals to the function; rethrows are
partially processed; no detections in
nested handlers.

Preprocessing Directives

N. MISRA Definition Comments

16-0-1 #include directives in a file shall only be
preceded by other preprocessor directives
or comments.

16-0-2 Macros shall only be #define ’d or #undef
’d in the global namespace.

16-0-3 #undef shall not be used.

16-0-4 Function-like macros shall not be defined.

3-86

MISRA® C++ Coding Rules

N. MISRA Definition Comments

16-0-5 Arguments to a function-like macro
shall not contain tokens that look like
preprocessing directives.

16-0-6 In the definition of a function-like macro,
each instance of a parameter shall be
enclosed in parentheses, unless it is used
as the operand of # or ##.

16-0-7 Undefined macro identifiers shall not be
used in #if or #elif preprocessor directives,
except as operands to the defined operator.

16-0-8 If the # token appears as the first token
on a line, then it shall be immediately
followed by a preprocessing token.

16-1-1 The defined preprocessor operator shall
only be used in one of the two standard
forms.

16-1-2 All #else, #elif and #endif preprocessor
directives shall reside in the same file as
the #if or #ifdef directive to which they
are related.

16-2-1 The preprocessor shall only be used for
file inclusion and include guards.

The rule is raised for #ifdef/#define if the
file is not an include file.

16-2-2 C++ macros shall only be used for: include
guards, type qualifiers, or storage class
specifiers.

16-2-3 Include guards shall be provided.

16-2-4 The ’, ", /* or // characters shall not occur
in a header file name.

16-2-5 The \ character should not occur in a
header file name.

16-2-6 The #include directive shall be followed
by either a <filename> or "filename"
sequence.

3-87

3 Coding Rule Sets and Concepts

N. MISRA Definition Comments

16-3-1 There shall be at most one occurrence of
the # or ## operators in a single macro
definition.

16-3-2 The # and ## operators should not be used.

Library Introduction

N. MISRA Definition Comments

17-0-1 Reserved identifiers, macros and
functions in the standard library shall not
be defined, redefined or undefined.

17-0-2 The names of standard library macros and
objects shall not be reused.

17-0-5 The setjmp macro and the longjmp
function shall not be used.

Language Support Library

N. MISRA Definition Comments

18-0-1 The C library shall not be used.

18-0-2 The library functions atof, atoi and atol
from library <cstdlib> shall not be used.

18-0-3 The library functions abort, exit, getenv
and system from library <cstdlib> shall
not be used.

The option -dialect iso must be used to
detect violations (e.g.:exit).

18-0-4 The time handling functions of library
<ctime> shall not be used.

18-0-5 The unbounded functions of library
<cstring> shall not be used.

18-2-1 The macro offsetof shall not be used.

3-88

MISRA® C++ Coding Rules

N. MISRA Definition Comments

18-4-1 Dynamic heap memory allocation shall
not be used.

18-7-1 The signal handling facilities of <csignal>
shall not be used.

Diagnostic Library

N. MISRA Definition Comments

19-3-1 The error indicator errno shall not be
used.

Input/output Library

N. MISRA Definition Comments

27-0-1 The stream input/output library <cstdio>
shall not be used.

MISRA C++ Rules Not Checked

• “Language Independent Issues” on page 3-90

• “General” on page 3-91

• “Lexical Conventions” on page 3-91

• “Standard Conversions” on page 3-92

• “Expressions” on page 3-92

• “Declarations” on page 3-92

• “Classes” on page 3-93

• “Templates” on page 3-93

• “Exception Handling” on page 3-94

• “Preprocessing Directives” on page 3-94

3-89

3 Coding Rule Sets and Concepts

• “Library Introduction” on page 3-94

Language Independent Issues

N. MISRA Definition Comments

0–1–3 A project shall not contain unused
variables.

0-1-4 A project shall not contain non-volatile
POD variables having only one use.

0-1-5 A project shall not contain unused type
declarations.

0-1-6 A project shall not contain instances of
non-volatile variables being given values
that are never subsequently used.

0-1-8 All functions with void return type shall
have external side effects.

0-1-9 There shall be no dead code. Not checked by the coding rules checker.
Can be enforced through detection of dead
code during analysis.

0-1-11 There shall be no unused parameters
(named or unnamed) in nonvirtual
functions.

0-1-12 There shall be no unused parameters
(named or unnamed) in the set of
parameters for a virtual function and all
the functions that override it.

0-2-1 An object shall not be assigned to an
overlapping object.

0-3-1 Minimization of run-time failures shall
be ensured by the use of at least one
of: (a) static analysis tools/techniques;
(b) dynamic analysis tools/techniques;
(c) explicit coding of checks to handle
run-time faults.

3-90

MISRA® C++ Coding Rules

N. MISRA Definition Comments

0-3-2 If a function generates error information,
then that error information shall be
tested.

0-4-1 Use of scaled-integer or fixed-point
arithmetic shall be documented.

0-4-2 Use of floating-point arithmetic shall be
documented.

0-4-3 Floating-point implementations shall
comply with a defined floating-point
standard.

General

N. MISRA Definition Comments

1-0-2 Multiple compilers shall only be used if
they have a common, defined interface.

1-0-3 The implementation of integer division in
the chosen compiler shall be determined
and documented.

Lexical Conventions

N. MISRA Definition Comments

2-2-1 The character set and the corresponding
encoding shall be documented.

2-7-2 Sections of code shall not be "commented
out" using C-style comments.

2-7-3 Sections of code should not be "commented
out" using C++ comments.

3-91

3 Coding Rule Sets and Concepts

Standard Conversions

N. MISRA Definition Comments

4-10-1 ULL shall not be used as an integer value.

4-10-2 Literal zero (0) shall not be used as the
null-pointer-constant.

Expressions

N. MISRA Definition Comments

5-0-13 The condition of an if-statement and the
condition of an iteration- statement shall
have type bool.

5-0-16 A pointer operand and any pointer
resulting from pointer arithmetic using
that operand shall both address elements
of the same array.

5-0-17 Subtraction between pointers shall only
be applied to pointers that address
elements of the same array.

5-17-1 The semantic equivalence between a
binary operator and its assignment
operator form shall be preserved.

Declarations

N. MISRA Definition Comments

7-1-1 A variable which is not modified shall be
const qualified.

7-1-2 A pointer or reference parameter in a
function shall be declared as pointer
to const or reference to const if the
corresponding object is not modified.

3-92

MISRA® C++ Coding Rules

N. MISRA Definition Comments

7-2-1 An expression with enum underlying type
shall only have values corresponding to
the enumerators of the enumeration.

7-4-1 All usage of assembler shall be
documented.

Classes

N. MISRA Definition Comments

9-3-3 If a member function can be made static
then it shall be made static, otherwise if it
can be made const then it shall be made
const.

9-6-1 When the absolute positioning of bits
representing a bit-field is required, then
the behavior and packing of bit-fields
shall be documented.

Templates

N. MISRA Definition Comments

14-5-1 A non-member generic function shall only
be declared in a namespace that is not an
associated namespace.

14-7-1 All class templates, function templates,
class template member functions and
class template static members shall be
instantiated at least once.

14-7-2 For any given template specialization,
an explicit instantiation of the template
with the template-arguments used in
the specialization shall not render the
program ill-formed.

3-93

3 Coding Rule Sets and Concepts

Exception Handling

N. MISRA Definition Comments

15-0-1 Exceptions shall only be used for error
handling.

15-1-1 The assignment-expression of a throw
statement shall not itself cause an
exception to be thrown.

15-3-1 Exceptions shall be raised only after
start-up and before termination of the
program.

15-3-4 Each exception explicitly thrown in the
code shall have a handler of a compatible
type in all call paths that could lead to
that point.15-5-3 The terminate() function shall not be
called implicitly.

Preprocessing Directives

N. MISRA Definition Comments

16-6-1 All uses of the #pragma directive shall be
documented.

Library Introduction

N. MISRA Definition Comments

17-0-3 The names of standard library functions
shall not be overridden.

17-0-4 All library code shall conform to MISRA
C++.

3-94

Polyspace® JSF C++ Checker

Polyspace JSF C++ Checker
The Polyspace JSF C++ checker helps you comply with the Joint Strike
Fighter Air Vehicle C++ coding standards (JSF++). These coding standards
were developed by Lockheed Martin® for the JSF program. They are designed
to improve the robustness of C++ code, and improve maintainability.

When JSF++ rules are violated, the Polyspace JSF C++ checker enables
Polyspace software to provide messages with information about the rule
violations. Most messages are reported during the compile phase of an
analysis.

Note The Polyspace JSF C++ checker is based on JSF++:2005.
For more information on these coding standards, see
http://www.jsf.mil/downloads/documents/JSF_AV_C++_Coding_Standards_Rev_C.doc.

3-95

http://www.jsf.mil/downloads/documents/JSF_AV_C++_Coding_Standards_Rev_C.doc

3 Coding Rule Sets and Concepts

JSF C++ Coding Rules

In this section...

“Supported JSF C++ Coding Rules” on page 3-96

“JSF++ Rules Not Checked” on page 3-121

Supported JSF C++ Coding Rules

• “Code Size and Complexity” on page 3-97

• “Environment” on page 3-97

• “Libraries” on page 3-98

• “Pre-Processing Directives” on page 3-99

• “Header Files” on page 3-100

• “Style” on page 3-100

• “Classes” on page 3-104

• “Namespaces” on page 3-108

• “Templates” on page 3-108

• “Functions” on page 3-108

• “Comments” on page 3-110

• “Declarations and Definitions” on page 3-110

• “Initialization” on page 3-111

• “Types” on page 3-112

• “Constants” on page 3-112

• “Variables” on page 3-112

• “Unions and Bit Fields” on page 3-113

• “Operators” on page 3-113

• “Pointers and References” on page 3-115

• “Type Conversions” on page 3-116

3-96

JSF® C++ Coding Rules

• “Flow Control Standards” on page 3-117

• “Expressions” on page 3-119

• “Memory Allocation” on page 3-120

• “Fault Handling” on page 3-120

• “Portable Code” on page 3-120

Code Size and Complexity

N. JSF++ Definition Comments

1 Any one function (or method) will contain
no more than 200 logical source lines of
code (L-SLOCs).

Message in report file:

<function name> has <num> logical
source lines of code.

3 All functions shall have a cyclomatic
complexity number of 20 or less.

Message in report file:

<function name> has cyclomatic
complexity number equal to <num>

Environment

N. JSF++ Definition Comments

8 All code shall conform to ISO/IEC
14882:2002(E) standard C++.

Reports the compilation error message

9 Only those characters specified in the C++
basic source character set will be used.

11 Trigraphs will not be used.

12 The following digraphs will not be used:
<%, %>, <:, :>, %:, %:%:.

Message in report file:

The following digraph will not be
used: <digraph>

Reports the digraph. If the rule level is
set to warning, the digraph will be allowed
even if it is not supported in -dialect iso

3-97

3 Coding Rule Sets and Concepts

N. JSF++ Definition Comments

13 Multi-byte characters and wide string
literals will not be used.

Report L'c’ and L"string" and use of
wchar_t.

14 Literal suffixes shall use uppercase rather
than lowercase letters.

15 Provision shall be made for run-time
checking (defensive programming).

Done with checks in the software.

Libraries

N. JSF++ Definition Comments

17 The error indicator errno shall not be
used.

errno should not be used as a macro or a
global with external "C" linkage.

18 The macro offsetof, in library
<stddef.h>, shall not be used.

offsetof should not be used as a macro or
a global with external "C" linkage.

19 <locale.h> and the setlocale function
shall not be used.

setlocale and localeconv should not be
used as a macro or a global with external
"C" linkage.

20 The setjmp macro and the longjmp
function shall not be used.

setjmp and longjmp should not be used
as a macro or a global with external "C"
linkage.

21 The signal handling facilities of <signal.h>
shall not be used.

signal and raise should not be used
as a macro or a global with external "C"
linkage.

22 The input/output library <stdio.h> shall
not be used.

all standard functions of <stdio.h> should
not be used as a macro or a global with
external "C" linkage.

23 The library functions atof, atoi and atol
from library <stdlib.h> shall not be used.

atof, atoi and atol should not be used
as a macro or a global with external "C"
linkage.

3-98

JSF® C++ Coding Rules

N. JSF++ Definition Comments

24 The library functions abort, exit, getenv
and system from library <stdlib.h> shall
not be used.

abort, exit, getenv and system should
not be used as a macro or a global with
external "C" linkage.

25 The time handling functions of library
<time.h> shall not be used.

clock, difftime, mktime, asctime, ctime,
gmtime, localtime and strftime should
not be used as a macro or a global with
external "C" linkage.

Pre-Processing Directives

N. JSF++ Definition Comments

26 Only the following preprocessor directives
shall be used: #ifndef, #define, #endif,
#include.

27 #ifndef, #define and #endif will be used
to prevent multiple inclusions of the same
header file. Other techniques to prevent
the multiple inclusions of header files will
not be used.

Detects the patterns #if !defined,
#pragma once, #ifdef, and missing
#define.

28 The #ifndef and #endif preprocessor
directives will only be used as defined in
AV Rule 27 to prevent multiple inclusions
of the same header file.

Detects any use that does not comply
with AV Rule 27. Assuming 35/27 is not
violated, reports only #ifndef.

29 The #define preprocessor directive shall
not be used to create inline macros. Inline
functions shall be used instead.

Rule is split into two parts: the definition
of a macro function (29.def) and the call
of a macrofunction (29.use).Messages in
report file:

• 29.1 : The #define preprocessor
directive shall not be used to
create inline macros.

• 29.2 : Inline functions shall be
used intead of inline macros

3-99

3 Coding Rule Sets and Concepts

N. JSF++ Definition Comments

30 The #define preprocessor directive shall
not be used to define constant values.
Instead, the const qualifier shall be
applied to variable declarations to specify
constant values.

Reports #define of simple constants.

31 The #define preprocessor directive will
only be used as part of the technique to
prevent multiple inclusions of the same
header file.

Detects use of #define that are not used
to guard for multiple inclusion, assuming
that rules 35 and 27 are not violated.

32 The #include preprocessor directive will
only be used to include header (*.h) files.

Header Files

N. JSF++ Definition Comments

33 The #include directive shall use the
<filename.h> notation to include header
files.

35 A header file will contain a mechanism
that prevents multiple inclusions of itself.

39 Header files (*.h) will not contain
non-const variable definitions or function
definitions.

Reports definitions of global variables /
function in header.

Style

N. JSF++ Definition Comments

40 Every implementation file shall include
the header files that uniquely define the
inline functions, types, and templates
used.

Reports when type, template, or inline
function is defined in source file.

41 Source lines will be kept to a length of 120
characters or less.

3-100

JSF® C++ Coding Rules

N. JSF++ Definition Comments

42 Each expression-statement will be on a
separate line.

Reports when two consecutive expression
statements are on the same line.

43 Tabs should be avoided.

44 All indentations will be at least two spaces
and be consistent within the same source
file.

Reports when a statement indentation
is not at least two spaces more than the
statement containing it. Does not report
bad indentation between opening braces
following if/else, do/while, for, and while
statements. NB: in final release it will
accept any indentation

46 User-specified identifiers (internal and
external) will not rely on significance of
more than 64 characters.

47 Identifiers will not begin with the
underscore character ’_’.

48 Identifiers will not differ by:

• Only a mixture of case

• The presence/absence of the underscore
character

• The interchange of the letter ’O’; with
the number ’0’ or the letter ’D’

• The interchange of the letter ’I’; with
the number ’1’ or the letter ’l’

• The interchange of the letter ’S’ with the
number ’5’

• The interchange of the letter ’Z’ with the
number 2

• The interchange of the letter ’n’ with the
letter ’h’

Checked regardless of scope. Not checked
between macros and other identifiers.

Messages in report file:

• Identifier "Idf1" (file1.cpp line
l1 column c1) and "Idf2" (file2.h
line l2 column c2) only differ
by the presence/absence of the
underscore character.

• Identifier "Idf1" (file1.cpp line
l1 column c1) and "Idf2" (file2.h
line l2 column c2) only differ by
a mixture of case.

• Identifier "Idf1" (file1.cpp line
l1 column c1) and "Idf2" (file2.h
line l2 column c2) only differ by
letter 'O', with the number '0'.

3-101

3 Coding Rule Sets and Concepts

N. JSF++ Definition Comments

50 The first word of the name of a class,
structure, namespace, enumeration, or
type created with typedef will begin with
an uppercase letter. All others letters will
be lowercase.

Messages in report file:
• The first word of the name of

a class will begin with an
uppercase letter.

• The first word of the namespace
of a class will begin with an
uppercase letter.

51 All letters contained in function and
variables names will be composed entirely
of lowercase letters.

Messages in report file:
• All letters contained in variable

names will be composed entirely
of lowercase letters.

• All letters contained in function
names will be composed entirely
of lowercase letters.

52 Identifiers for constant and enumerator
values shall be lowercase.

Messages in report file:
• Identifier for enumerator value

shall be lowercase.

• Identifier for template constant
parameter shall be lowercase.

53 Header files will always have file name
extension of ".h".

.H is allowed if you set the option -dos.

53.1 The following character sequences shall
not appear in header file names: ', \, /*,
//, or ".

54 Implementation files will always have a
file name extension of ".cpp".

Not case sensitive if you set the option
-dos.

57 The public, protected, and private sections
of a class will be declared in that order.

3-102

JSF® C++ Coding Rules

N. JSF++ Definition Comments

58 When declaring and defining functions
with more than two parameters, the
leading parenthesis and the first argument
will be written on the same line as the
function name. Each additional argument
will be written on a separate line (with the
closing parenthesis directly after the last
argument).

Detects that two parameters are not on the
same line, The first parameter should be
on the same line as function name. Does
not check for the closing parenthesis.

59 The statements forming the body of an
if, else if, else, while, do ... while or for
statement shall always be enclosed in
braces, even if the braces form an empty
block.

Messages in report file:

• The statements forming the body
of an if statement shall always
be enclosed in braces.

• The statements forming the body
of an else statement shall always
be enclosed in braces.

• The statements forming the body
of a while statement shall always
be enclosed in braces.

• The statements forming the body
of a do ... while statement
shall always be enclosed in
braces.

• The statements forming the body
of a for statement shall always
be enclosed in braces.

60 Braces ("{}") which enclose a block will
be placed in the same column, on separate
lines directly before and after the block.

Detects that statement-block braces should
be in the same columns.

61 Braces ("{}") which enclose a block will
have nothing else on the line except
comments.

3-103

3 Coding Rule Sets and Concepts

N. JSF++ Definition Comments

62 The dereference operator ‘*’ and the
address-of operator ‘&’ will be directly
connected with the type-specifier.

Reports when there is a space between
type and "*" "&" for variables, parameters
and fields declaration.

63 Spaces will not be used around ‘.’ or ‘->’, nor
between unary operators and operands.

Reports when the following characters are
not directly connected to a white space:
• .

• ->

• !

• ~

• -

• ++

• —

Note A violation will be reported for “.”
used in float/double definition.

Classes

N. JSF++ Definition Polyspace Comments

67 Public and protected data should only be
used in structs - not classes.

68 Unneeded implicitly generated member
functions shall be explicitly disallowed.

Reports when default constructor,
assignment operator, copy constructor or
destructor is not declared.

71.1 A class’s virtual functions shall not be
invoked from its destructor or any of its
constructors.

Reports when a constructor or destructor
directly calls a virtual function.

3-104

JSF® C++ Coding Rules

N. JSF++ Definition Polyspace Comments

74 Initialization of nonstatic class members
will be performed through the member
initialization list rather than through
assignment in the body of a constructor.

All data should be initialized in the
initialization list except for array. Does not
report that an assignment exists in ctor
body.Message in report file:

Initialization of nonstatic class
members "<field>" will be performed
through the member initialization
list.

75 Members of the initialization list shall
be listed in the order in which they are
declared in the class.

76 A copy constructor and an assignment
operator shall be declared for classes that
contain pointers to data items or nontrivial
destructors.

Messages in report file:

• no copy constructor and no copy
assign

• no copy constructor

• no copy assign

77.1 The definition of a member function
shall not contain default arguments that
produce a signature identical to that of the
implicitly-declared copy constructor for the
corresponding class/structure.

Does not report when an explicit copy
constructor exists.

78 All base classes with a virtual function
shall define a virtual destructor.

79 All resources acquired by a class shall be
released by the class’s destructor.

Reports when the number of “new” called
in a constructor is greater than the number
of “delete” called in its destructor.

Note A violation is raised even if “new”
is done in a “if/else”.

3-105

3 Coding Rule Sets and Concepts

N. JSF++ Definition Polyspace Comments

81 The assignment operator shall handle
self-assignment correctly.

Reports when copy assignment body does
not begin with “if (this != arg)” A
violation is not raised if an empty else
statement follows the if, or the body
contains only a return statement.

A violation is raised when the if statement
is followed by a statement other than the
return statement.

82 An assignment operator shall return a
reference to *this.

The following operators should return
*this on method, and *first_arg on plain
function.

operator=
operator+=
operator-=
operator*=
operator >>=
operator <<=
operator /=
operator %=
operator |=
operator &=
operator ^=
prefix operator++
prefix operator--

Does not report when no return exists.

No special message if type does not match.

Messages in report file:

• An assignment operator shall
return a reference to *this.

• An assignment operator shall
return a reference to its first
arg.

3-106

JSF® C++ Coding Rules

N. JSF++ Definition Polyspace Comments

83 An assignment operator shall assign
all data members and bases that affect
the class invariant (a data element
representing a cache, for example, would
not need to be copied).

Reports when a copy assignment does not
assign all data members. In a derived class,
it also reports when a copy assignment
does not call inherited copy assignments.

88 Multiple inheritance shall only be
allowed in the following restricted form: n
interfaces plus m private implementations,
plus at most one protected implementation.

Messages in report file:

• Multiple inheritance on public
implementation shall not be
allowed: <public_base_class> is
not an interface.

• Multiple inheritance on
protected implementation
shall not be allowed :
<protected_base_class_1>

• <protected_base_class_2> are not
interfaces.

88.1 A stateful virtual base shall be explicitly
declared in each derived class that accesses
it.

89 A base class shall not be both virtual and
nonvirtual in the same hierarchy.

94 An inherited nonvirtual function shall not
be redefined in a derived class.

Does not report for destructor.Message in
report file:

Inherited nonvirtual function %s
shall not be redefined in a derived
class.

95 An inherited default parameter shall
never be redefined.

96 Arrays shall not be treated
polymorphically.

Reports pointer arithmetic and array like
access on expressions whose pointed type
is used as a base class.

3-107

3 Coding Rule Sets and Concepts

N. JSF++ Definition Polyspace Comments

97 Arrays shall not be used in interface. Only to prevent array-to-pointer-decay,
Not checked on private methods

97.1 Neither operand of an equality operator
(== or !=) shall be a pointer to a virtual
member function.

Reports == and != on pointer to member
function of polymorphic classes (cannot
determine statically if it is virtual or not),
except when one argument is the null
constant.

Namespaces

N. JSF++ Definition Polyspace Comments

98 Every nonlocal name, except main(),
should be placed in some namespace.

99 Namespaces will not be nested more than
two levels deep.

Templates

N. JSF++ Definition Polyspace Comments

104 A template specialization shall be declared
before its use.

Reports the actual compilation error
message.

Functions

N. JSF++ Definition Polyspace Comments

107 Functions shall always be declared at file
scope.

108 Functions with variable numbers of
arguments shall not be used.

3-108

JSF® C++ Coding Rules

N. JSF++ Definition Polyspace Comments

109 A function definition should not be placed
in a class specification unless the function
is intended to be inlined.

Reports when "inline" is not in the
definition of a member function inside the
class definition.

110 Functions with more than 7 arguments
will not be used.

111 A function shall not return a pointer or
reference to a non-static local object.

Simple cases without alias effect detected.

113 Functions will have a single exit point. Reports first return, or once per function.

114 All exit points of value-returning functions
shall be through return statements.

116 Small, concrete-type arguments (two or
three words in size) should be passed
by value if changes made to formal
parameters should not be reflected in the
calling function.

Report constant parameters references
with sizeof <= 2 * sizeof(int). Does
not report for copy-constructor.

119 Functions shall not call themselves, either
directly or indirectly (i.e. recursion shall
not be allowed).

Direct recursion is reported statically.
Indirect recursion reported through the
software. Message in report file:

Function <F> shall not call
directly itself.

121 Only functions with 1 or 2 statements
should be considered candidates for inline
functions.

Reports inline functions with more than 2
statements.

3-109

3 Coding Rule Sets and Concepts

Comments

N. JSF++ Definition Polyspace Comments

126 Only valid C++ style comments (//) shall
be used.

133 Every source file will be documented
with an introductory comment that
provides information on the file name,
its contents, and any program-required
information (e.g. legal statements,
copyright information, etc).

Reports when a file does not begin with
two comment lines.Note: This rule cannot
be annotated in the source code.

Declarations and Definitions

N. JSF++ Definition Polyspace Comments

135 Identifiers in an inner scope shall not use
the same name as an identifier in an outer
scope, and therefore hide that identifier.

136 Declarations should be at the smallest
feasible scope.

Reports when:
• A global variable is used in only one
function.

• A local variable is not used in a
statement (expr, return, init …) of
the same level of its declaration (in
the same block) or is not used in two
sub-statements of its declaration.

Note

• Non-used variables are reported.

• Initializations at definition are ignored
(not considered an access)

3-110

JSF® C++ Coding Rules

N. JSF++ Definition Polyspace Comments

137 All declarations at file scope should be
static where possible.

138 Identifiers shall not simultaneously have
both internal and external linkage in the
same translation unit.

139 External objects will not be declared in
more than one file.

Reports all duplicate declarations inside
a translation unit. Reports when the
declaration localization is not the same in
all translation units.140 The register storage class specifier shall

not be used.

141 A class, structure, or enumeration will not
be declared in the definition of its type.

Initialization

N. JSF++ Definition Polyspace Comments

142 All variables shall be initialized before
use.

Done with Non-initialized variable checks
in the software.

144 Braces shall be used to indicate and match
the structure in the non-zero initialization
of arrays and structures.

This covers partial initialization.

145 In an enumerator list, the ’=’ construct
shall not be used to explicitly initialize
members other than the first, unless all
items are explicitly initialized.

Generates one report for an enumerator
list.

3-111

3 Coding Rule Sets and Concepts

Types

N. JSF++ Definition Polyspace Comments

147 The underlying bit representations of
floating point numbers shall not be used
in any way by the programmer.

Reports on casts with float pointers (except
with void*).

148 Enumeration types shall be used instead
of integer types (and constants) to select
from a limited series of choices.

Reports when non enumeration types are
used in switches.

Constants

N. JSF++ Definition Polyspace Comments

149 Octal constants (other than zero) shall
not be used.

150 Hexadecimal constantswill be represented
using all uppercase letters.

151 Numeric values in code will not be used;
symbolic values will be used instead.

Reports direct numeric constants (except
integer/float value 1, 0) in expressions,
non -const initializations. and switch
cases. char constants are allowed. Does not
report on templates non-type parameter.

151.1 A string literal shall not be modified. Report when a char*, char[], or string
type is used not as const.A violation is
raised if a string literal (for example, “ “) is
cast as a non const.

Variables

N. JSF++ Definition Polyspace Comments

152 Multiple variable declarations shall not
be allowed on the same line.

3-112

JSF® C++ Coding Rules

Unions and Bit Fields

N. JSF++ Definition Polyspace Comments

153 Unions shall not be used.

154 Bit-fields shall have explicitly unsigned
integral or enumeration types only.

156 All the members of a structure (or class)
shall be named and shall only be accessed
via their names.

Reports unnamed bit-fields (unnamed
fields are not allowed).

Operators

N. JSF++ Definition Polyspace Comments

157 The right hand operand of a && or ||
operator shall not contain side effects.

Assumes rule 159 is not violated.Messages
in report file:

• The right hand operand of a &&
operator shall not contain side
effects.

• The right hand operand of a ||
operator shall not contain side
effects.

158 The operands of a logical && or || shall
be parenthesized if the operands contain
binary operators.

Messages in report file:
• The operands of a logical &&

shall be parenthesized if
the operands contain binary
operators.

• The operands of a logical ||
shall be parenthesized if
the operands contain binary
operators.

3-113

3 Coding Rule Sets and Concepts

N. JSF++ Definition Polyspace Comments

Exception for:
X || Y || Z , Z&&Y &&Z

159 Operators ||, &&, and unary & shall not be
overloaded.

Messages in report file:
• Unary operator & shall not be

overloaded.

• Operator || shall not be
overloaded.

• Operator && shall not be
overloaded.

160 An assignment expression shall be used
only as the expression in an expression
statement.

Only simple assignment, not +=, ++, etc.

162 Signed and unsigned values shall not
be mixed in arithmetic or comparison
operations.

163 Unsigned arithmetic shall not be used.

164 The right hand operand of a shift operator
shall lie between zero and one less than
the width in bits of the left-hand operand
(inclusive).

164.1 The left-hand operand of a right-shift
operator shall not have a negative value.

Detects constant case +. Found by the
software for dynamic cases.

165 The unary minus operator shall not be
applied to an unsigned expression.

166 The sizeof operator will not be used on
expressions that contain side effects.

168 The comma operator shall not be used.

3-114

JSF® C++ Coding Rules

Pointers and References

N. JSF++ Definition

169 Pointers to pointers should be avoided
when possible.

Reports second-level pointers, except for
arguments of main.

170 More than 2 levels of pointer indirection
shall not be used.

Only reports on variables/parameters.

171 Relational operators shall not be applied to
pointer types except where both operands
are of the same type and point to:

• the same object,

• the same function,

• members of the same object, or

• elements of the same array (including
one past the end of the same array).

Reports when relational operator are used
on pointer types (casts ignored).

173 The address of an object with automatic
storage shall not be assigned to an object
which persists after the object has ceased
to exist.

174 The null pointer shall not be
de-referenced.

Done with checks in software.

175 A pointer shall not be compared to NULL
or be assigned NULL; use plain 0 instead.

Reports usage of NULL macro in pointer
contexts.

176 A typedef will be used to simplify
program syntax when declaring function
pointers.

Reports non-typedef function pointers,
or pointers to member functions for types
of variables, fields, parameters. Returns
type of function, cast, and exception
specification.

3-115

3 Coding Rule Sets and Concepts

Type Conversions

N. JSF++ Definition Comments

177 User-defined conversion functions should
be avoided.

Reports user defined conversion function,
non-explicit constructor with one
parameter or default value for others
(even undefined ones). Does not report
copy-constructor.

Additional message for constructor case:

This constructor should be flagged
as "explicit".

178 Down casting (casting from base to derived
class) shall only be allowed through one of
the following mechanism:

• Virtual functions that act like dynamic
casts (most likely useful in relatively
simple cases).

• Use of the visitor (or similar) pattern
(most likely useful in complicated cases).

Reports explicit down casting,
dynamic_cast included. (Visitor patter
does not have a special case.)

179 A pointer to a virtual base class shall not
be converted to a pointer to a derived class.

Reports this specific down cast. Allows
dynamic_cast.

180 Implicit conversions that may result in a
loss of information shall not be used.

Reports the following implicit casts :
integer => smaller integer
unsigned => smaller or eq signed
signed => smaller or eq un-signed
integer => float
float => integer

Does not report for cast to bool reports for
implicit cast on constant done with the
options -scalar-overflows-checks
signed-and-unsigned or
-ignore-constant-overflows

3-116

JSF® C++ Coding Rules

N. JSF++ Definition Comments

.

181 Redundant explicit casts will not be used. Reports useless cast: cast T to T. Casts
to equivalent typedefs are also reported.

182 Type casting from any type to or from
pointers shall not be used.

Does not report when Rule 181 applies.

184 Floating point numbers shall not be
converted to integers unless such a
conversion is a specified algorithmic
requirement or is necessary for a hardware
interface.

Reports float->int conversions. Does not
report implicit ones.

185 C++ style casts (const_cast,
reinterpret_cast, and static_cast)
shall be used instead of the traditional
C-style casts.

Flow Control Standards

N. JSF++ Definition Comments

186 There shall be no unreachable code. Done with gray checks in the software.

187 All non-null statements shall potentially
have a side-effect.

188 Labels will not be used, except in switch
statements.

189 The goto statement shall not be used.

190 The continue statement shall not be
used.

191 The break statement shall not be used
(except to terminate the cases of a switch
statement).

3-117

3 Coding Rule Sets and Concepts

N. JSF++ Definition Comments

192 All if, else if constructs will contain
either a final else clause or a comment
indicating why a final else clause is not
necessary.

else if should contain an else clause.

193 Every non-empty case clause in a switch
statement shall be terminated with a
break statement.

194 All switch statements that do not intend
to test for every enumeration value shall
contain a final default clause.

Reports only for missing default.

195 A switch expression will not represent a
Boolean value.

196 Every switch statement will have at least
two cases and a potential default.

197 Floating point variables shall not be used
as loop counters.

Assumes 1 loop parameter.

198 The initialization expression in a for
loop will perform no actions other than
to initialize the value of a single for loop
parameter.

Reports if loop parameter cannot be
determined. Assumes Rule 200 is not
violated. The loop variable parameter is
assumed to be a variable.

199 The increment expression in a for loop
will perform no action other than to
change a single loop parameter to the next
value for the loop.

Assumes 1 loop parameter (Rule 198),
with non class type. Rule 200 must not be
violated for this rule to be reported.

200 Null initialize or increment expressions in
for loops will not be used; a while loop
will be used instead.

201 Numeric variables being used within a
for loop for iteration counting shall not be
modified in the body of the loop.

Assumes 1 loop parameter (AV rule 198),
and no alias writes.

3-118

JSF® C++ Coding Rules

Expressions

N. JSF++ Definition Polyspace Comments

202 Floating point variables shall not be
tested for exact equality or inequality.

Reports only direct equality/inequality.
Check done for all expressions.

203 Evaluation of expressions shall not lead
to overflow/underflow.

Done with overflow checks in the software.

204 A single operation with side-effects shall
only be used in the following contexts:

• by itself

• the right-hand side of an assignment

• a condition

• the only argument expression with a
side-effect in a function call

• condition of a loop

• switch condition

• single part of a chained operation

Reports when:

• A side effect is found in a return
statement

• A side effect exists on a single value,
and only one operand of the function call
has a side effect.

204.1 The value of an expression shall be the
same under any order of evaluation that
the standard permits.

Reports when:

• Variable is written more than once in
an expression

• Variable is read and write in
sub-expressions

• Volatile variable is accessed more than
once

Note Read-write operations such as ++,
are only considered as a write.

205 The volatile keyword shall not be used
unless directly interfacing with hardware.

Reports if volatile keyword is used.

3-119

3 Coding Rule Sets and Concepts

Memory Allocation

N. JSF++ Definition Comments

206 Allocation/deallocation from/to the
free store (heap) shall not occur after
initialization.

Reports calls to C library functions:
malloc / calloc / realloc / free and
all new/delete operators in functions or
methods.

Fault Handling

N. JSF++ Definition Comments

208 C++ exceptions shall not be used. Reports try, catch, throw spec, and
throw.

Portable Code

N. JSF++ Definition Comments

209 The basic types of int, short, long,
float and double shall not be used,
but specific-length equivalents should be
typedef’d accordingly for each compiler,
and these type names used in the code.

Only allows use of basic types through
direct typedefs.

213 No dependence shall be placed on
C++’s operator precedence rules, below
arithmetic operators, in expressions.

Reports when a binary operation has one
operand that is not parenthesized and is
an operation with inferior precedence level.
Reports bitwise and shifts operators that
are used without parenthesis and binary
operation arguments.

215 Pointer arithmetic will not be used. Reports:
p + I
p - I
p++
p--
p+=
p-= Allows p[i].

3-120

JSF® C++ Coding Rules

JSF++ Rules Not Checked

• “Code Size and Complexity” on page 3-122

• “Rules” on page 3-122

• “Environment” on page 3-122

• “Libraries” on page 3-122

• “Header Files” on page 3-123

• “Style” on page 3-123

• “Classes” on page 3-123

• “Namespaces” on page 3-125

• “Templates” on page 3-125

• “Functions” on page 3-126

• “Comments” on page 3-127

• “Initialization” on page 3-127

• “Types” on page 3-127

• “Unions and Bit Fields” on page 3-128

• “Operators” on page 3-128

• “Type Conversions” on page 3-128

• “Expressions” on page 3-128

• “Memory Allocation” on page 3-129

• “Portable Code” on page 3-129

• “Efficiency Considerations” on page 3-129

• “Miscellaneous” on page 3-129

• “Testing” on page 3-130

3-121

3 Coding Rule Sets and Concepts

Code Size and Complexity

N. JSF++ Definition

2 There shall not be any self-modifying code.

Rules

N. JSF++ Definition

4 To break a “should” rule, the following approval must be received by the developer:
• approval from the software engineering lead (obtained by the unit approval in the
developmental CM tool)

5 To break a “will” or a “shall” rule, the following approvals must be received by the
developer:
• approval from the software engineering lead (obtained by the unit approval in the
developmental CM tool)

• approval from the software product manager (obtained by the unit approval in the
developmental CM tool)

6 Each deviation from a “shall” rule shall be documented in the file that contains the
deviation. Deviations from this rule shall not be allowed, AV Rule 5 notwithstanding.

7 Approval will not be required for a deviation from a “shall” or “will” rule that complies
with an exception specified by that rule.

Environment

N. JSF++ Definition

10 Values of character types will be restricted to a defined and documented subset of ISO
10646 1.

Libraries

N. JSF++ Definition

16 Only DO-178B level A [15] certifiable or SEAL 1 C/C++ libraries shall be used with
safety-critical (i.e. SEAL 1) code.

3-122

JSF® C++ Coding Rules

Header Files

N. JSF++ Definition

34 Header files should contain logically related declarations only.

36 Compilation dependencies should be minimized when possible.

37 Header (include) files should include only those header files that are required for them
to successfully compile. Files that are only used by the associated .cpp file should be
placed in the .cpp file — not the .h file.

38 Declarations of classes that are only accessed via pointers (*) or references (&) should be
supplied by forward headers that contain only forward declarations.

Style

N. JSF++ Definition

45 All words in an identifier will be separated by the ‘_’ character.

49 All acronyms in an identifier will be composed of uppercase letters.

55 The name of a header file should reflect the logical entity for which it provides
declarations.

56 The name of an implementation file should reflect the logical entity for which it provides
definitions and have a “.cpp” extension (this name will normally be identical to the
header file that provides the corresponding declarations.) At times, more than one .cpp
file for a given logical entity will be required. In these cases, a suffix should be appended
to reflect a logical differentiation.

Classes

N. JSF++ Definition

64 A class interface should be complete and minimal.

65 A structure should be used to model an entity that does not require an invariant.

66 A class should be used to model an entity that maintains an invariant.

3-123

3 Coding Rule Sets and Concepts

N. JSF++ Definition

69 A member function that does not affect the state of an object (its instance variables) will
be declared const.
Member functions should be const by default. Only when there is a clear, explicit reason
should the const modifier on member functions be omitted.

70 A class will have friends only when a function or object requires access to the private
elements of the class, but is unable to be a member of the class for logical or efficiency
reasons.

70.1 An object shall not be improperly used before its lifetime begins or after its lifetime ends.

71 Calls to an externally visible operation of an object, other than its constructors, shall
not be allowed until the object has been fully initialized.

72 The invariant for a class should be:

• A part of the postcondition of every class constructor,

• A part of the precondition of the class destructor (if any),

• A part of the precondition and postcondition of every other publicly accessible
operation.

73 Unnecessary default constructors shall not be defined.

77 A copy constructor shall copy all data members and bases that affect the class invariant
(a data element representing a cache, for example, would not need to be copied).

80 The default copy and assignment operators will be used for classes when those operators
offer reasonable semantics.

84 Operator overloading will be used sparingly and in a conventional manner.

85 When two operators are opposites (such as == and !=), both will be defined and one will
be defined in terms of the other.

86 Concrete types should be used to represent simple independent concepts.

87 Hierarchies should be based on abstract classes.

90 Heavily used interfaces should be minimal, general and abstract.

91 Public inheritance will be used to implement “is-a” relationships.

3-124

JSF® C++ Coding Rules

N. JSF++ Definition

92 A subtype (publicly derived classes) will conform to the following guidelines with respect
to all classes involved in the polymorphic assignment of different subclass instances to
the same variable or parameter during the execution of the system:

• Preconditions of derived methods must be at least as weak as the preconditions of the
methods they override.

• Postconditions of derived methods must be at least as strong as the postconditions
of the methods they override.

In other words, subclass methods must expect less and deliver more than the base
class methods they override. This rule implies that subtypes will conform to the Liskov
Substitution Principle.

93 “has-a” or “is-implemented-in-terms-of” relationships will be modeled through
membership or non-public inheritance.

Namespaces

N. JSF++ Definition

100 Elements from a namespace should be selected as follows:

• using declaration or explicit qualification for few (approximately five) names,

• using directive for many names.

Templates

N. JSF++ Definition

101 Templates shall be reviewed as follows:

1 with respect to the template in isolation considering assumptions or requirements
placed on its arguments.

2 with respect to all functions instantiated by actual arguments.

102 Template tests shall be created to cover all actual template instantiations.

3-125

3 Coding Rule Sets and Concepts

N. JSF++ Definition

103 Constraint checks should be applied to template arguments.

105 A template definition’s dependence on its instantiation contexts should be minimized.

106 Specializations for pointer types should be made where appropriate.

Functions

N. JSF++ Definition

112 Function return values should not obscure resource ownership.

115 If a function returns error information, then that error information will be tested.

117 Arguments should be passed by reference if NULL values are not possible:
• 117.1 – An object should be passed as const T& if the function should not change
the value of the object.

• 117.2 – An object should be passed as T& if the function may change the value of
the object.

118 Arguments should be passed via pointers if NULL values are possible:
• 118.1 – An object should be passed as const T* if its value should not be modified.

• 118.2 – An object should be passed as T* if its value may be modified.

120 Overloaded operations or methods should form families that use the same semantics,
share the same name, have the same purpose, and that are differentiated by formal
parameters.122 Trivial accessor and mutator functions should be inlined.

123 The number of accessor and mutator functions should be minimized.

124 Trivial forwarding functions should be inlined.

125 Unnecessary temporary objects should be avoided.

3-126

JSF® C++ Coding Rules

Comments

N. JSF++ Definition

127 Code that is not used (commented out) shall be deleted.Note: This rule cannot be
annotated in the source code.

128 Comments that document actions or sources (e.g. tables, figures, paragraphs, etc.)
outside of the file being documented will not be allowed.

129 Comments in header files should describe the externally visible behavior of the functions
or classes being documented.

130 The purpose of every line of executable code should be explained by a comment, although
one comment may describe more than one line of code.

131 One should avoid stating in comments what is better stated in code (i.e. do not simply
repeat what is in the code).

132 Each variable declaration, typedef, enumeration value, and structure member will
be commented.

134 Assumptions (limitations) made by functions should be documented in the function’s
preamble.

Initialization

N. JSF++ Definition

143 Variables will not be introduced until they can be initialized with meaningful values.
(See also AV Rule 136, AV Rule 142, and AV Rule 73 concerning declaration scope,
initialization before use, and default constructors respectively.)

Types

N. JSF++ Definition

146 Floating point implementations shall comply with a defined floating point standard.

The standard that will be used is the ANSI/IEEE Std 754 [1].

3-127

3 Coding Rule Sets and Concepts

Unions and Bit Fields

N. JSF++ Definition

155 Bit-fields will not be used to pack data into a word for the sole purpose of saving space.

Operators

N. JSF++ Definition

167 The implementation of integer division in the chosen compiler shall be determined,
documented and taken into account.

Type Conversions

N. JSF++ Definition

183 Every possible measure should be taken to avoid type casting.

Expressions

N. JSF++ Definition

204 A single operation with side-effects shall only be used in the following contexts:

1 by itself

2 the right-hand side of an assignment

3 a condition

4 the only argument expression with a side-effect in a function call

5 condition of a loop

6 switch condition

7 single part of a chained operation

3-128

JSF® C++ Coding Rules

Memory Allocation

N. JSF++ Definition

207 Unencapsulated global data will be avoided.

Portable Code

N. JSF++ Definition

210 Algorithms shall not make assumptions concerning how data is represented in memory
(e.g. big endian vs. little endian, base class subobject ordering in derived classes,
nonstatic data member ordering across access specifiers, etc.).

210.1 Algorithms shall not make assumptions concerning the order of allocation of nonstatic
data members separated by an access specifier.

211 Algorithms shall not assume that shorts, ints, longs, floats, doubles or long doubles
begin at particular addresses.

212 Underflow or overflow functioning shall not be depended on in any special way.

214 Assuming that non-local static objects, in separate translation units, are initialized in a
special order shall not be done.

Efficiency Considerations

N. JSF++ Definition

216 Programmers should not attempt to prematurely optimize code.

Miscellaneous

N. JSF++ Definition

217 Compile-time and link-time errors should be preferred over run-time errors.

218 Compiler warning levels will be set in compliance with project policies.

3-129

3 Coding Rule Sets and Concepts

Testing

N. JSF++ Definition

219 All tests applied to a base class interface shall be applied to all derived class interfaces
as well. If the derived class poses stronger postconditions/invariants, then the new
postconditions /invariants shall be substituted in the derived class tests.

220 Structural coverage algorithms shall be applied against flattened classes.

221 Structural coverage of a class within an inheritance hierarchy containing virtual
functions shall include testing every possible resolution for each set of identical
polymorphic references.

3-130

4

Check Coding Rules from
the Polyspace Environment

• “Activate Coding Rules Checker” on page 4-2

• “Select Specific MISRA or JSF Coding Rules” on page 4-6

• “Create Custom Coding Rules” on page 4-8

• “Format of Custom Coding Rules File” on page 4-10

• “Exclude Files From Rule Checking” on page 4-12

• “Allow Custom Pragma Directives” on page 4-13

• “Specify Boolean Types” on page 4-14

• “Find Coding Rule Violations” on page 4-15

• “Review Coding Rule Violations” on page 4-16

• “Apply Coding Rule Violation Filters” on page 4-18

4 Check Coding Rules from the Polyspace® Environment

Activate Coding Rules Checker
This example shows how to activate the coding rules checker before you
start an analysis. This activation enables Polyspace Bug Finder to search
for coding rule violations. You can view the coding rule violations in your
analysis results.

1 Open project configuration.

2 In the Configuration tree view, select Coding Rules.

3 Select the check box for the type of coding rules that you want to check.

For C code, you can check compliance with:

• MISRA C:2004

• MISRA AC AGC

• Custom coding rules
For C++ code, you can check compliance with:

• MISRA C++

• JSF C++

• Custom coding rules

4-2

Activate Coding Rules Checker

4 For each rule type that you select, from the drop-down list, select the
subset of rules to check.

MISRA C:2004

Option Description

required-rules All required MISRA C coding rules.

all-rules All required and advisory MISRA C coding rules.

SQO-subset1
A small subset of MISRA C rules. In Polyspace
Code Prover, observing these rules can reduce the
number of unproven results.

SQO-subset2

A second subset of rules that include the rules
in SQO-subset1 and contain some additional
rules. In Polyspace Code Prover, observing the
additional rules can further reduce the number of
unproven results.

custom A set of MISRA C coding rules that you specify.

MISRA AC AGC

Option Description

OBL-rules All required MISRA AC AGC coding rules.

OBL-REC-rules
All required and recommended MISRA AC AGC
coding rules.

all-rules
All required, recommended, and readability
coding rules.

SQO-subset1
A small subset of MISRA AC AGC rules. In
Polyspace Code Prover, observing these rules can
reduce the number of unproven results.

4-3

4 Check Coding Rules from the Polyspace® Environment

Option Description

SQO-subset2

A second subset of MISRA AC AGC rules that
include the rules in SQO-subset1 and contain
some additional rules. In Polyspace Code Prover,
observing the additional rules can further reduce
the number of unproven results.

custom
A set of MISRA AC AGC coding rules that you
specify.

MISRA C++

Option Description

required-rules All required MISRA C++ coding rules.

all-rules
All required and advisory MISRA C++ coding
rules.

SQO-subset1
A small subset of MISRA C++ rules. In Polyspace
Code Prover, observing these rules can reduce the
number of unproven results.

SQO-subset2

A second subset of rules with indirect impact on
the selectivity in addition to SQO-subset1. In
Polyspace Code Prover, observing the additional
rules can further reduce the number of unproven
results.

custom A specified set of MISRA C++ coding rules.

JSF C++

Option Description

shall-rules Shall rules are mandatory requirements. These
rules require verification.

shall-will-rules All Shall andWill rules. Will rules are intended
to be mandatory requirements. However, these
rules do not require verification.

4-4

Activate Coding Rules Checker

Option Description

all-rules All Shall,Will, and Should rules. Should rules
are advisory rules.

custom A set of JSF C++ coding rules that you specify.

5 If you select Check custom rules, specify the path to your custom rules
file or click Edit to create one.

When rules checking is complete, the software displays the coding rule
violations in purple on the Results Summary pane.

Related
Examples

• “Select Specific MISRA or JSF Coding Rules” on page 4-6
• “Create Custom Coding Rules” on page 4-8
• “Exclude Files From Rule Checking” on page 4-12

Concepts • “Rule Checking” on page 3-2

4-5

4 Check Coding Rules from the Polyspace® Environment

Select Specific MISRA or JSF Coding Rules
This example shows how to specify a subset of MISRA or JSF rules for the
coding rules checker. If you select custom from the MISRA or JSF drop-down
list, you must provide a file that specifies the rules to check.

1 Open project configuration.

2 In the Configuration tree view, select Coding Rules.

3 Select the check box for the type of coding rules you wish to check

4 From the corresponding drop-down list, select custom. The software
displays a new field for your custom file.

5 To the right of this field, click Edit. A New File window opens, displaying
a table of rules.

Select On for the rules you want to check.

4-6

Select Specific MISRA® or JSF® Coding Rules

6 Click OK to save the rules and close the window.

The Save as dialog box opens.

7 In the File field, enter a name for the rules file.

8 Click OK to save the file and close the dialog box.

The full path to the rules file appears. To reuse this rules file for other

projects, type this path name or use the icon in the New File window.

Related
Examples

• “Activate Coding Rules Checker” on page 4-2
• “Create Custom Coding Rules” on page 4-8

Concepts • “Rule Checking” on page 3-2

4-7

4 Check Coding Rules from the Polyspace® Environment

Create Custom Coding Rules
This example shows how to create a custom coding rules file. You can use this
file to check names or text patterns in your source code against custom rules
that you specify. For each rule, you specify a pattern in the form of a regular
expression. The software compares the pattern against identifiers in the
source code and determines whether the custom rule is violated.

Save Example Code

Save the following code in a file printInitialValue.c:

#include <stdio.h>

typedef struct {
int a;
int b;
} collection;

void main()
{
collection myCollection={0,0};
printf("Initial values in the collection are %d

and %d.",myCollection.a,myCollection.b);
}

Create Coding Rules File

1 Create a Polyspace project. Add printInitialValue.c to the project.

2 On the Configuration pane, select Coding Rules. Select the Check
custom rules box.

3 Click .

The New File window opens, displaying a table of rule groups.

4 From the drop-down list Set the following state to all Custom C rules,
select Off. Click Apply.

4-8

Create Custom Coding Rules

5 Expand the Structs node. For the option 4.3 All struct fields must
follow the specified pattern:

Column Title Action

On Select .

Convention Enter All struct fields
must begin with s_ and have
capital letters.

Pattern Enter s_[A-Z0-9_]

Comment Leave blank. This column is for
comments that appear in the coding
rules file alone.

Review Coding Rule Violations

1 Save the file and run the verification. On the Results Summary pane,
you see two violations of rule 4.3. Select the first violation.

a On the Source pane, the line int a; is marked.

b On the Check Details pane, you see the error message you had
entered, All struct fields must begin with s_ and have capital
letters.

2 Right-click on the Source pane and select Open Source File. The file
printInitialValue.c opens in a text editor.

3 In the file, replace all instances of a with s_A and b with s_B. Save the file
and rerun the verification.

The custom rule violations no longer appear on the Results Summary
pane.

Related
Examples

• “Activate Coding Rules Checker” on page 4-2
• “Select Specific MISRA or JSF Coding Rules” on page 4-6
• “Exclude Files From Rule Checking” on page 4-12

Concepts • “Rule Checking” on page 3-2
• “Format of Custom Coding Rules File” on page 4-10

4-9

4 Check Coding Rules from the Polyspace® Environment

Format of Custom Coding Rules File
In a custom coding rules file, each rule appears in the following format:

N.n off|warning

convention=violation_message

pattern=regular_expression

• N.n — Custom rule number, for example, 1.2.

• off — Rule is not considered.

• warning— The software checks for violation of the rule. After verification,
it displays the coding rule violation on the Results Summary pane.

• violation_message— Software displays this text in an XML file within
the Results/Polyspace-Doc folder.

• regular_expression — Software compares this text pattern against a
source code identifier that is specific to the rule. See “Custom Naming
Convention Rules” on page 3-3.

The keywords convention= and pattern= are optional. If present, they
apply to the rule whose number immediately precedes these keywords. If
convention= is not given for a rule, then a standard message is used. If
pattern= is not given for a rule, then the default regular expression is
used, that is, .*.

Use the symbol # to start a comment. Comments are not allowed on lines
with the keywords convention= and pattern=.

The following example contains three custom rules: 1.1, 8.1, and 9.1.

Custom rules configuration file

1.1 off # Disable custom rule number 1.1

8.1 warning # Violation of custom rule 8.1 produces a warning

convention=Global constants must begin by G_ and must be in capital letters.

pattern=G_[A-Z0-9_]*

9.1 warning # Non-adherence to custom rule 9.1 produces a warning

convention=Global variables should begin by g_.

pattern=g_.*

4-10

Format of Custom Coding Rules File

Related
Examples

• “Create Custom Coding Rules” on page 4-8

4-11

4 Check Coding Rules from the Polyspace® Environment

Exclude Files From Rule Checking
This example shows how to exclude certain files from coding rules checking.

1 Open project configuration.

2 In the Configuration tree view, select Coding Rules.

3 Select the Files and folders to ignore check box.

4 From the corresponding drop-down list, select one of the following:

• all-headers (default) — Rule checker excludes folders that contain only
header files, that is, folders without source files.

• all— Rule checker excludes all include folders. For example, if you are
checking a large code base with standard or Visual headers, excluding
include folders can significantly improve the speed of code analysis.

• custom — Rule checker excludes files or folders specified in the

File/Folder view. To add files to the custom File/Folder list, select
to choose the files and folders to exclude. To remove a file or folder from

the list of excluded files and folders, select the row. Then click .

Related
Examples

• “Activate Coding Rules Checker” on page 4-2

Concepts • “Rule Checking” on page 3-2

4-12

Allow Custom Pragma Directives

Allow Custom Pragma Directives
This example shows how to exclude custom pragma directives from coding
rules checking. MISRA C rule 3.4 requires checking that pragma directives
are documented within the documentation of the compiler. However, you can
allow undocumented pragma directives to be present in your code.

1 Open project configuration.

2 In the Configuration tree view, select Coding Rules.

3 To the right of Allowed pragmas, click .

In the Pragma view, the software displays an active text field.

4 In the text field, enter a pragma directive.

5 To remove a directive from the Pragma list, select the directive. Then

click .

Related
Examples

• “Activate Coding Rules Checker” on page 4-2

Concepts • “Rule Checking” on page 3-2

4-13

4 Check Coding Rules from the Polyspace® Environment

Specify Boolean Types
This example shows how to specify data types you want Polyspace to consider
as Boolean during MISRA C rules checking. The software applies this
redefinition only to data types defined by typedef statements. The use of this
option may affect the checking of MISRA C rules 12.6, 13.2, and 15.4.

1 Open project configuration.

2 In the Configuration tree view, select Coding Rules.

3 To the right of Effective boolean types, click .

In the Type view, the software displays an active text field.

4 In the text field, specify the data type that you want Polyspace to treat
as Boolean.

5 To remove a data type from the Type list, select the data type. Then click

.

Related
Examples

• “Activate Coding Rules Checker” on page 4-2

Concepts • “Rule Checking” on page 3-2

4-14

Find Coding Rule Violations

Find Coding Rule Violations
This example shows how to check for coding rule violations alone.

1 Open project configuration.

2 In the Configuration tree view, select Coding Rules. Activate the
desired coding rule checker.

3 In the Configuration tree view, select Bug Finder Analysis.

4 Clear the Find defects check box.

5 Click to run the coding rules checker without checking defects.

You can view the results by selecting the RuleSet-report.xml file from
the results folder.

Related
Examples

• “Activate Coding Rules Checker” on page 4-2
• “Select Specific MISRA or JSF Coding Rules” on page 4-6
• “Review Coding Rule Violations” on page 4-16

Concepts • “Rule Checking” on page 3-2

4-15

4 Check Coding Rules from the Polyspace® Environment

Review Coding Rule Violations
This example shows how to review coding rule violations in the Results
Manager perspective once code analysis is complete. After analysis, the
Results Summary pane displays the rule violations with a

• symbol for predefined coding rules such as MISRA C:2004.

• symbol for custom coding rules.

1 Select a coding-rule violation on the Results Summary pane.

• The predefined rules such as MISRA C or C++ or JSF C++ are indicated
by .

• The custom rules are indicated by .

2 On the Check Details pane, view the location and description of the
violated rule. In the source code, the line containing the violation appears
highlighted.

3 Review the violation. On the Check Review tab, select a Classification
to describe the severity of the issue:

• High

• Medium

• Low

• Not a defect

4 Select a Status to describe how you intend to address the issue:

• Fix

4-16

Review Coding Rule Violations

• Improve

• Investigate

• Justify with annotations

• No Action Planned

• Other

• Restart with different options

• Undecided
You can also define your own statuses.

5 In the comment box, enter additional information about the violation.

6 To open the source file that contains the coding rule violation, on the
Source pane, right-click the code with the purple check. From the context
menu, select Open Source File. The file opens in your text editor.

7 Fix the coding rule violation.

8 When you have corrected the coding rule violations, run the analysis again.

Related
Examples

• “Activate Coding Rules Checker” on page 4-2
• “Find Coding Rule Violations” on page 4-15
• “Apply Coding Rule Violation Filters” on page 4-18

4-17

4 Check Coding Rules from the Polyspace® Environment

Apply Coding Rule Violation Filters
This example shows how to use filters in the Results Summary pane to focus
on specific kinds of coding rule violations. By default, the software displays
both coding rule violations and defects.

To filter violations by rule number:

1 On the Results Summary pane, place your cursor on the Check column
header. Click the filter icon that appears.

2 From the context menu, clear the All check box.

3 Select the violated rule numbers that you want to focus on.

4 Click OK.

Related
Examples

• “Activate Coding Rules Checker” on page 4-2
• “Review Coding Rule Violations” on page 4-16

4-18

5

Find Bugs From the
Polyspace Environment

• “Choose Specific Defects” on page 5-2

• “Run Local Analysis” on page 5-3

• “Run Remote Batch Analysis” on page 5-4

• “Monitor Analysis” on page 5-5

• “Specify Results Folder” on page 5-6

5 Find Bugs From the Polyspace® Environment

Choose Specific Defects
There are two preset configurations for Bug Finder defects, but you can also
customize which defects to check for during the analysis.

1 In the Configuration pane, select Bug Finder Analysis to view the Bug
Finder Analysis defects pane.

2 Select the Find defects check box.

3 From the drop-down menu, select a set of defects. The options are:

• default for the default list of defects. This list contains defects that are
applicable to most coding projects. To see if certain defects are included
in this list, refer to the individual check reference pages.

• all for all defects.

• custom to select and deselect individual defects or categories of defects.

5-2

Run Local Analysis

Run Local Analysis
Before running an analysis from the Polyspace interface, you must set up
your project’s source files and analysis options. For more information, see
“Create New Project” on page 1-17.

1 Select a project to analyze.

2 Select the button.

You can monitor the analysis in the Monitor tab. If the analysis fails, the
Output Summary window lists errors or warnings.

Once the analysis has completed, you can open your results from the
Results folder.

5-3

5 Find Bugs From the Polyspace® Environment

Run Remote Batch Analysis
Before running a batch analysis, you must set up your project’s source files,
analysis options, and remote analysis settings. If you have not done so, see
“Create New Project” on page 1-17 and “Set Up Polyspace Metrics” on page 1-7.

1 Select a project to analyze.

2 In the Configuration window, select the Distributed Computing pane.

3 Select the Batch check box.

4 If you want to store your results in the Polyspace Metrics repository, select
the Add to results repository check box.

Otherwise, clear this check box.

5 Select the button.

You can monitor the analysis from the Polyspace Queue Manager .

Once the analysis has completed, you can open your results from the
Results folder, or download them from Polyspace Metrics.

5-4

Monitor Analysis

Monitor Analysis
To monitor the progress of a local analysis, use the following tabs in the
Project Manager perspective of Polyspace Bug Finder:

• Progress Monitor — A blue progress bar indicates the time and
percentage completed.

• Full Log — This tab displays messages, errors, and statistics for the
phases of the analysis. To search for a term, in the Search field, enter the
required term. Click the up arrow or down arrow to move sequentially
through occurrences of this term.

• Output Summary — Displays compile phase messages and errors. To
search for a term, in the Search field, enter the required term. Click the
up or down arrow to move sequentially through occurrences of the term.

At the end of a local analysis, the Verification Statistics tab displays
statistics, for example, code coverage and check distribution.

To monitor the progress of a remote analysis:

1 From the Polyspace interface, select the Queue Manager button .

2 In the Polyspace Queue Manager, follow your job progress.

5-5

5 Find Bugs From the Polyspace® Environment

Specify Results Folder
By default, Polyspace Bug Finder saves your results in the same directory as
your project in a folder called Results. Each subsequent analysis overwrites
the old results.

However, to specify a different location for results:

1 In the Project Browser, right-click on the Results folder.

2 From the context menu, select Choose a Result Folder.

3 In the Choose a Result Folder window, navigate to the new results
folder and click Select.

In the Project Browser, the new results folder appears.

The previous results folder disappears from the Project Browser. However,
the results have not been deleted, just removed from the Polyspace
interface. To view the previous results, use File > Open Results.

5-6

6

View Results in the
Polyspace Environment

• “Open Results” on page 6-2

• “View Results Summary in Polyspace Metrics” on page 6-3

• “Download Results From Polyspace Metrics” on page 6-5

• “Filter and Group Results” on page 6-8

• “Generate Reports” on page 6-15

• “Review and Comment Results” on page 6-16

• “Import Comments from Previous Analyses” on page 6-20

• “Code Metrics” on page 6-21

• “View Code Sequence Causing Defect” on page 6-28

• “Results Folder Contents” on page 6-31

• “Windows in the Results Manager Perspective” on page 6-33

• “Bug Finder Defect Categories” on page 6-47

• “Common Weakness Enumeration from Bug Finder Defects” on page 6-49

6 View Results in the Polyspace® Environment

Open Results
This example shows how to open Polyspace Bug Finder results in the Results
Manager perspective. Before you open the results, you must run Polyspace
Bug Finder analysis on your source files and obtain a results file with
extension .psbf.

Open Results from Active Project

Suppose you have a project called Bug_Finder_Example open in
the Project Browser. The results are from the project are called
Bug_Finder_Example.psbf in the folder Results.

1 Navigate to Bug_Finder_Example.psbf under Results.

2 Double-click Bug_Finder_Example.psbf. The analysis results appear in
the Results Manager perspective.

Open Results File Using File Browser

If the results file Bug_Finder_Example.psbf is located on the path
'C:\Bug_Finder_Example\Results'

1 Select File > Open Result.... The Open Results browser opens.

2 Navigate to the result folder containing the file with extension .psbf. In
this example, navigate to 'C:\Bug_Finder_Example\Results'.

3 Select the file. Click Open. The analysis results appear in the Results
Manager perspective.

Concepts • “Results Folder Contents” on page 6-31
• “Windows in the Results Manager Perspective” on page 6-33

6-2

View Results Summary in Polyspace® Metrics

View Results Summary in Polyspace Metrics
This example shows how to view results summary in Polyspace Metrics.
If you check the configuration option Add to results repository under
Distributed Computing, after remote analysis, you can view a summary
of the results in Polyspace Metrics.

Open Polyspace Metrics

In the address bar of your Web browser, enter the following URL:

protocol:// ServerName: PortNumber

• protocol is either http (default) or https. To use HTTPS, you must set up
the configuration file and theMetrics and Remote Server Settings.

• ServerName is the name or IP address of your Polyspace Metrics server.

• PortNumber is the Web server port number (default 8080)

On the webpage, you can view the projects saved to your Polyspace Metrics
repository.

View Results Summary

1 Select the Projects tab.

2 To view the results summary for your project, on the Projects column,
select the project name.

6-3

6 View Results in the Polyspace® Environment

The results summary for the project appears on the webpage under the
Summary tab. The Confirmed Defects column lists the number of
coding rule violations or checks that you have reviewed.

3 To view the results in more detail, select the tabs:

• Code Metrics: Metrics such as number of lines, header files and
function calls.

• Coding Rules: Description of coding rule violations

• Bug-Finder: Description of defects detected by Polyspace Bug Finder

Related
Examples

• “Set Up Polyspace Metrics” on page 1-7
• “Download Results From Polyspace Metrics” on page 6-5
• “Review and Comment Results” on page 6-16

Concepts • “Code Metrics” on page 6-21

6-4

Download Results From Polyspace® Metrics

Download Results From Polyspace Metrics
This example shows how to download results from Polyspace Metrics. If
you check the configuration option Add to results repository under
Distributed Computing, after remote analysis, you can view a summary
of the results in Polyspace Metrics.

Open Polyspace Metrics

In the address bar of your Web browser, enter the following URL:

protocol:// ServerName: PortNumber

• protocol is either http (default) or https. To use HTTPS, you must set up
the configuration file and theMetrics and Remote Server Settings.

• ServerName is the name or IP address of your Polyspace Metrics server.

• PortNumber is the Web server port number (default 8080)

On the webpage, you can view the projects saved to your Polyspace Metrics
repository.

Download Results

1 Select the Projects tab.

2 To view the results summary for your project, on the Projects column,
select the project name.

The results summary for the project appears on the webpage under the
Summary tab.

6-5

6 View Results in the Polyspace® Environment

3 To download results:

• For an individual file, on the Verification column, select the name of
the file.

• For a group of files:

a Right-click on the row containing a file in the group. From the context
menu, select Add To Module....

b Enter the name of your module in the dialog box. Click OK.

The name of the module appears on the Verification column.

c Drag and drop the other files in the group to the module.

d Select the name of the module.

• For all files in the project, on the Verification column, select the version
number of the project.

6-6

Download Results From Polyspace® Metrics

The results open in Polyspace Bug Finder Results Manager.

Related
Examples

• “Set Up Polyspace Metrics” on page 1-7
• “View Results Summary in Polyspace Metrics” on page 6-3
• “Review and Comment Results” on page 6-16

Concepts • “Code Metrics” on page 6-21

6-7

6 View Results in the Polyspace® Environment

Filter and Group Results
This example shows how to filter and group defects on the Results Summary
pane. To organize your review of results, use filters and groups when you
want to:

• Review certain categories of defects in preference to others. For instance,
you first want to address the defects resulting from Missing or invalid
return statement.

• Not address the full set of coding rule violations detected by the coding
rules checker.

• Review only those defects that you have already assigned a certain status.
For instance, you want to review only those defects to which you have
assigned the status, Investigate.

• Review defects from a particular file or function. Because of continuity of
code, reviewing these defects together can help you organize your review
process.

If you have written the code for a particular source file, you can review
the defects only in that file.

Review Defects in a Given Category

To review defects resulting from Array access out of bounds:

1 Open the results file, with extension, .psbf.

2 On the Results Summary pane, from the drop-down list, select Checks
by Family.

The defects are grouped by type.

6-8

Filter and Group Results

3 Under the category Static memory, expand the subcategory Array
access out of bounds.

Expand Array access out of bounds to view all instances of this defect
type.

To see further information about an instance, select it. The information
appears on the Check Details pane.

4 To view only the defects resulting from Out of bounds array index, on
the Results Summary pane, from the drop-down list, select List of
Checks.

6-9

6 View Results in the Polyspace® Environment

The defects appear ungrouped.

5 Place your cursor on the Check column head. The filter icon appears.

6 Click the filter icon.

A context menu lists the filter options available.

7 Clear the All check box.

8 Select the Array access out of bounds check box. Click OK.

The Results Summary pane displays only the defects resulting from the
Array access out of bounds error.

Review Defects with Given Status

To review only the defects with Investigate status:

1 Open the results file, with extension, .psbf.

6-10

Filter and Group Results

2 On the Results Summary pane, place your cursor on the Status column
head.

3 Click the filter icon.

A context menu lists the filter options available.

4 Clear the All check box.

5 Select the Investigate check box. Click OK.

The Results Summary pane displays only the defects with the
Investigate status.

Review Defects in a File

To review the defects in the file, dataflow.c:

1 On the Results Summary pane, from the drop-down list, select Checks
by File/Function.

The defects displayed are grouped by files. The file names are sorted
alphabetically. Within each file name, the defects are grouped by functions,
sorted alphabetically.

6-11

6 View Results in the Polyspace® Environment

2 To view the defects in dataflow.c, expand a function name under the
category, dataflow.c.

To view further information on a bug, select the bug. The information on
the bug appears on the Check Details pane.

6-12

Filter and Group Results

3 To view only the defects in dataflow.c, on the Results Summary pane,
from the drop-down list, select List of Checks.

The Results Summary pane displays defects ungrouped.

4 Place your cursor on the File column head.

5 Click the filter icon.

A context menu lists the filter options available.

6 Clear the All check box.

6-13

6 View Results in the Polyspace® Environment

7 Select the dataflow.c check box. Click OK.

The Results Summary pane displays only the defects in dataflow.c.

Tip If you apply a filter on a column on the Results Summary pane, the
column header displays the number of check boxes selected in the filter menu.
Use this information to keep track of filters you applied.

Related
Examples

• “Open Results” on page 6-2
• “Review and Comment Results” on page 6-16

Concepts • “Windows in the Results Manager Perspective” on page 6-33

6-14

Generate Reports

Generate Reports
This example shows how to generate reports for a Polyspace Bug Finder
analysis.

1 Open your results file in the Results Manager perspective.

2 Select Run > Run Report > Run Report....

The Run Report dialog box opens.

3 In the Select Reports section, select the types of reports that you want to
generate. For example, you can select BugFinder and CodeMetrics.

4 Select the Output folder in which to save the report.

5 Select the Output format for the report.

6 Click Run Report.

The software creates the specified report and opens it.

See Also “Generate report” | “Report template” | “Output format”

6-15

6 View Results in the Polyspace® Environment

Review and Comment Results
This example shows how to review and comment results using the Results
Manager perspective. When reviewing results, you can assign a status to the
defects and enter comments to describe the results of your review. These
actions help you to track the progress of your review and avoid reviewing
the same defect twice.

Review and Comment Individual Defect

1 On the Results Summary pane, select the defect that you want to review.

The Check Details pane displays information about the current defect.

2 On the Results Summary pane, enter a Classification for the defect to
describe its severity:

• High

• Medium

• Low

• Not a defect

3 On the Results Summary pane, enter a Status to describe how you
intend to address the defect:

6-16

Review and Comment Results

• Fix

• Improve

• Investigate

• Justify

• No action planned

• Other

4 On the Results Summary pane, enter remarks in the Comment field,
for example, defect or justification information.

Review and Comment Group of Defects

1 On the Results Summary pane, select a group of defects using one of
the following methods:

• For contiguous defects, select the first defect. Then Shift-select the
last defect.

To group together the defects that belong to a certain category, click the
Check column header on the Results Summary pane.

• For non-contiguous defects, Ctrl-select each defect.

6-17

6 View Results in the Polyspace® Environment

• For defects of a similar category, right-click one defect from that
category. From the context menu, select Select All Defect Category
Checks, for example, Select All "Memory leak" Checks.

2 On the Results Summary pane, enter Classification, Status and
Comments. The software applies this information to all the selected
defects.

Save Review Comments

After you have reviewed your results, save your comments with the analysis
results. Saving your comments makes them available the next time that you
open the results file, allowing you to avoid reviewing the same check twice.

6-18

Review and Comment Results

To save your review comments, select File > Save. Your comments are saved
with the analysis results.

Related
Examples

• “Open Results” on page 6-2
• “Filter and Group Results” on page 6-8

Concepts • “Windows in the Results Manager Perspective” on page 6-33

6-19

6 View Results in the Polyspace® Environment

Import Comments from Previous Analyses
This example shows how to import review comments from previous analyses.
By default, Polyspace Bug Finder automatically imports comments from the
previous analysis, allowing you to avoid reviewing the same defect twice.
However, you can also manually import comments into the current review

Import Comments from Previous Analysis

1 Open your most recent results in the Results Manager perspective.

2 Select Review > Import > Import Comments.

3 Navigate to the folder containing your previous results.

4 Select the results file with extension .psbf, then click Open.

The review comments from the previous results are imported into the
current results, and the Import checks and comments report opens.

Change Preferences for Automatically Importing Comments

1 Select Options > Preferences, which opens the Polyspace Preferences
dialog box.

2 Select the Project and result folder tab.

3 Under Import Comments, select or clear the Automatically import
comments from last verification check box.

4 Click OK.

6-20

Code Metrics

Code Metrics
The following table provides descriptions of the columns in the Code Metrics
view on the Polyspace Metrics webpage.

Level Metric name Description HIS metric?

Files Number of source files. No

Header Files Directly and indirectly included header files,
including Polyspace internal header files and
the header files included by these internal
files.

The number of included headers shows how
many header files are verified for the current
project.

No

Recursions Call graph recursions. Number of call cycles
over one or more functions.

If one function is at the same time directly
recursive (it calls itself) and indirectly
recursive, the call cycle is counted only once.

Call cycle through pointer is not considered.

Yes

Direct Recursions Number of direct recursions. Yes

Protected Shared
Variables

Number of protected shared variables.

This measure is provided only from the
analysis PASS0.

No

Project

Non-Protected
Shared Variables

Number of unprotected shared variables.

This measure is provided only from the
analysis PASS0.

No

6-21

6 View Results in the Polyspace® Environment

Level Metric name Description HIS metric?

Lines Number of lines.

Physical lines including comment and blank
lines

No

Lines of Code Number of lines without comment, that is,
lines excluding blank or comment lines.

A line that contains code and comment is
counted.

No

Comment Density Relationship of the number of comments
(outside and within functions) to the number
of statements.

An internal comment is a comment that
begins and/or ends with the source code line;
otherwise a comment is considered external.
In the comment density calculation, the
comments in the header file (before the first
preprocessing directive or the first token in
the source file) are ignored. Two comments
that are not separated by a token are
considered as one occurrence. The number
of statements within a file is the number of
semicolons in the preprocessed source code
except within for loops, structure or union
field definitions, comments, literal strings,
preprocessing directives, or parameters
lists in the scope of K & R style function
declarations.

The comment density is:

number of external comment occurrences /
number of statements

Yes

File

Estimated Function
Coupling

Inter-file dependency.

Metric is equal to:

sum of call occurrences – number of functions
defined in the file + 1.

No

6-22

Code Metrics

Level Metric name Description HIS metric?

The function coupling is calculated in a
preprocessed file.

Lines Within Body Total number of lines in a function body,
including blank and comment lines: number
of lines between the first { and the last } of
a function body.

The number of lines within a function
body is calculated in the preprocessed file.
If a function body contains an #include
directive, the included file source code is
taken into account in the calculation of the
lines of this function.

The preprocessing directives lines are taken
into account in the calculation of the lines.

No

Executable Lines Total number of lines with source code tokens
between a function body ’{’ and ’}’ that
are not declarations (w/o static initializer),
comments, braces, or preprocessing
directives.

The number of execution lines within a
function body is calculated in a preprocessed
file.

If the function body contains an #include
directive, the included file source code is
taken into account in the calculation of the
execution lines of this function.

No

Cyclomatic
Complexity

Number of decisions + 1. The ?: operator is
considered a decision, but the combination of
&& || is considered to be only one decision.

Yes

Language Scope The language scope is an indicator of the cost
of maintaining or changing functions.

Metric value = (N1+N2) / (n1+n2)

Yes

Function

6-23

6 View Results in the Polyspace® Environment

Level Metric name Description HIS metric?

where:

n1 = number of different operators

N1 = sum of all operators

n2 = number of different operands

N2 = sum of all operands

The computation is based on the preprocessed
source code.
Consider the following code.

int f(int i)

{

if (i == 1)

return i;

else

return i * g(i-1);

}

In this code, the:

• Distinct operators are int, (,),{, if, ==,
return, else, *, -, ;, }

• Number of operators is 12

• Number of operator occurrences is 17

• Distinct operands are f, i, 1, g

• Number of operands is 4

• Number of operand occurrences is 9

For this example, the metric value is:

1.8 ((17 + 9) / (12 + 4))

Paths Estimated static path count.

The following code contains one path.

Yes

6-24

Code Metrics

Level Metric name Description HIS metric?

switch (n)
{
case 1:
case 2:
case 3:
case 4:
default:

break;
}

The following code contains two paths.

switch (n)
{
case 1:
case 2:

break;
case 3:
case 4:
default:

break;
}

Implicit else is considered as one path.

This value is not computed when a goto
exists within the function body.

Calling Functions Number of distinct callers of a function. Call
through pointer is not considered.

Yes

Called Functions Number of distinct functions called by
a function. Call through pointer is not
considered. See description for Call
Occurrences

Yes

Call Occurrences Number of call occurrences within function
body.

No

6-25

6 View Results in the Polyspace® Environment

Level Metric name Description HIS metric?

Similar to Called Functions except that
each call of a function is counted.

Consider the following code.

int callee_1() {return 0;}

int callee_2() {return 0;}

int get()

{

return callee_1() + callee_1() + callee_2() + callee_2();

}

For this code, the Called Functions value
is 2 but the Call Occurrences value is 4.

Instructions Number of instructions per function, which
is a measure of function complexity.

Let STMT(function_code_element)
represent the metric value for
function_code_element. The following
applies:

STMT (simple_statement) = 1

STMT (empty_statement) = 0

STMT (label) = 0

STMT (block) = STMT (block_body)

STMT (declaration_
without_initializer) = 0;

STMT (declaration_with_ initializer)
= 1;

STMT (other_statements) = 1 where
other_statements are break, continue,
do-while, for, goto, if, return, switch,
while.

Yes

6-26

Code Metrics

Level Metric name Description HIS metric?

Call Levels Depth of function nesting.

Maximum depth of control structures within
a function body. The value of 1 means
either control structure do not exist within a
function body or existing control structures
are not nested within another control
structure.

Yes

Function
Parameters

Number of parameters per function. A
measure of the complexity of the function
interface.

Ellipsis (...) parameter is ignored.

Yes

Goto Statements Number of goto statements within a
function.

break and continue are not counted as goto
statements.

If this value is > 0, the number of Paths
cannot be computed.

Yes

Return Points Number of return points within a function.

Number of explicit return statements within
a function body.

The following function has zero return
points:
void f(void) {},The following function
has one return point:
void f(void) {return;}

Yes

6-27

6 View Results in the Polyspace® Environment

View Code Sequence Causing Defect
This example shows how to view the code sequence that is probably causing a
defect in the Results Manager perspective. The example uses the following
code, which contains the defect Non-initialized pointer:

#include <stdlib.h>

int* assign_value_and_return_address(int* prev, int val)
{

int* pi;

if (prev == NULL) {
pi = (int*)malloc(sizeof(int));
if (pi == NULL) return NULL;

}

*pi = val;
/* Defect: Writing to uninitialized pointer */

return pi;
}

The code is stored in a source file store_value.c.

1 Run a Polyspace Bug Finder analysis on store_value.c.

2 Open the results file with extension .psbf.

3 On the Results Summary pane, select the defect Non-initialized
pointer.

6-28

View Code Sequence Causing Defect

• The code line containing the defect is highlighted in dark blue on the
Source pane. More information on the defect is available on the Check
Details pane.

• The following columns describe the sequence of code instructions causing
the defect:

a Event: Instruction causing the defect

b Scope: Function containing instruction

c Line: Line number of instruction
These instructions are also highlighted in medium blue on the Source
pane. The corresponding line numbers are marked by squares. Place
your cursor over a square to view a tooltip. The tooltip describes how
the instruction is possibly related to the defect.

• Other instructions that can possibly impact the defect are highlighted in
light blue on the Source pane. To see these instructions on the Check
Details pane, select the Variable trace check box.

4 To navigate to an instruction from the probable code sequence in the
source code, select the instruction on the Event column. The corresponding
line is highlighted on the Source pane.

6-29

6 View Results in the Polyspace® Environment

Related
Examples

• “Run Local Analysis” on page 5-3
• “View Results Summary in Polyspace Metrics” on page 6-3
• “Review and Comment Results” on page 6-16

Concepts • “Source” on page 6-39
• “Check Details” on page 6-45

6-30

Results Folder Contents

Results Folder Contents

In this section...

“Files in the Results Folder” on page 6-31

“Files in the ALL Subfolder” on page 6-31

“Files in the Polyspace-Doc Subfolder” on page 6-32

Every time you run an analysis, Polyspace Bug Finder generates files and
folders that contain information about configuration options and analysis
results. The contents of results folders depend on the configuration options.
To learn more about configuration options, see “Analysis Options for C”.

By default, your results are saved in your project folder in a folder called
Result. To use a different folder, see “Specify Results Folder” on page 5-6.

Files in the Results Folder
Some of the files in the results folder are described below:

• Polyspace_release_project_name_date-time — A
log file associated with each analysis, for example,
Polyspace_R2013b_example_project_05_17_2013-12h01.log.

• project_name.psbf— An ASCII file containing the location of the most
recent results and log. The software uses this file to open results in the
Results Manager.

• options— The list of options used for the most recent analysis.

• source_list.txt— A list of sources verified by the latest analysis.

Files in the ALL Subfolder
The ALL subfolder contains internal information that is used by Polyspace
Bug Finder to show sources and checks.

• SRC\MACROS\ci.zip — A zip file containing expanded source files with
a .ci suffix.

6-31

6 View Results in the Polyspace® Environment

• SRC*.[c or h] — Source code file included in the analysis. The file
contains user source code and code generated by Polyspace Bug Finder.

Files in the Polyspace-Doc Subfolder
The Polyspace-Doc subfolder contains reports generated with the
-report-template, -report-output-name, or -report-ouput-format
options.

• Code_Metrics.xml— A list of metrics from the most recent analysis.

6-32

Windows in the Results Manager Perspective

Windows in the Results Manager Perspective

In this section...

“Dashboard” on page 6-33

“Results Summary” on page 6-37

“Source” on page 6-39

“Check Details” on page 6-45

Dashboard
On the Source pane, the Dashboard tab provides statistics on the analysis
results in a graphical format.

When you open a results file in the Results Manager perspective, this tab is
displayed by default. You can view the following graphs:

•

Code covered by analysis

From this graph you can obtain the following information:

6-33

6 View Results in the Polyspace® Environment

- # Files analysed: Ratio of analyzed files to total number of files. If a
file contains a compilation error, Polyspace Bug Finder does not analyze
the file.

- # Functions analysed: Ratio of analyzed functions to total number
of functions in the analyzed files. If the analysis of a function takes
longer than a threshold value, Polyspace Bug Finder does not analyze
the function.

- # Lines of code: Total number of code lines in source files.

- # Lines without comments: Total number of code lines in source files
excluding lines that are only comments.

- # Header files: Total number of files included in your source files using
#include directive.

•

Defect distribution by category or file

From this graph you can obtain the following information.

6-34

Windows in the Results Manager Perspective

Category File

Top 10 The ten defect types with the highest
number of individual defects.

- Each column represents a defect
type and is divided into the:

• File with highest number of
defects of this type.

• File with second highest number
of defects of this type.

• All other files with defects of this
type.

Place your cursor on a column to
see the file name and number of
defects of this type in this file.

- The x-axis represents the number
of defects.

Use this view to organize your check
review starting at defect types with
more individual defects.

The ten source files with the highest
number of defects.

- Each column represents a file and
is divided into the:

• Defect type with highest number
of defects in this file.

• Defect type with second highest
number of defects in this file.

• All other defect types in this file.

Place your cursor on a column to see
the defect type name and number
of defects of this type in this file.

- The x-axis represents the number
of defects.

Use this view to organize your check
review starting at files with more
defects.

Bottom 10 The ten defect types with the lowest
number of individual defects. Each
column on the graph is divided the
same way as the Top 10 defect types.

Use this view to organize your check
review starting at defect types with
fewer individual defects.

The ten source files with the lowest
number of defects. Each column on
the graph is divided the same way as
the Top 10 files.

Use this view to organize your check
review starting at files with fewer
defects.

•

6-35

6 View Results in the Polyspace® Environment

Coding rule violations by rule or file

For every type of coding rule that you check (MISRA, JSF, or custom), the
Dashboard contains a graph of the rule violations.

From this graph you can obtain the following information.

Category File

Top 10 The ten rules with the highest number
of violations.

- Each column represents a rule
number and is divided into the:

• File with highest number of
violations of this rule.

• File with second highest number
of violations of this rule.

• All other files with violations of
this rule.

Place your cursor on a column to
see the file name and number of
violations of this rule in the file.

- The x-axis represents the number
of rule violations.

The ten source files containing the
highest number of violations.

- Each column represents a file and
is divided into the:

• Rule with highest number of
violations in this file.

• Rule with second highest number
of violations in this file.

• All other rules violated in this
file.

Place your cursor on a column to
see the rule number and number of
violations of the rule in this file.

- The x-axis represents the number
of rule violations.

6-36

Windows in the Results Manager Perspective

Category File

Use this view to organize your review
starting at rules with more violations.

Use this view to organize your review
starting at files with more rule
violations.

Bottom 10 The ten rules with the lowest number
of violations. Each column on the
graph is divided in the same way as
the Top 10 rules.

Use this view to organize your review
starting at rules with fewer violations.

The ten source files containing the
lowest number of rule violations. Each
column on the graph is divided in the
same way as the Top 10 files.

Use this view to organize your review
starting at files with fewer rule
violations.

For a list of supported coding rules, see “Supported MISRA C:2004 Rules”
on page 3-18, “Supported MISRA C++ Coding Rules” on page 3-69 and
“Supported JSF C++ Coding Rules” on page 3-96.

Results Summary
The Results Summary pane lists all defects along with their attributes. To
organize your results review, from the drop-down list on this pane, select
one of the following options:

• List of checks: Lists defects and coding rule violations in alphabetical
order.

• Checks by Family: Lists results grouped by category. For more
information on the defects covered by a category, see “Polyspace Bug
Finder Defects”.

• Checks by Class: Lists results grouped by class. Within each class, the
results are grouped by method. The first group, Global Scope, lists results
not occurring in a class definition.

This option is available for C++ code only.

• Checks by File/Function: Lists results grouped by file. Within each file,
the results are grouped by function.

For each defect, the Results Summary pane contains the defect attributes,
listed in columns:

6-37

6 View Results in the Polyspace® Environment

Attribute Description

Family Group to which the defect
belongs. For instance, if you
choose the grouping Checks by
File/Function, this column
contains the name of the file and
function containing the defect.

ID Unique identification number of the
defect. In the default view on the
Results Summary pane, the defects
appear sorted by this number.

Type Defect or coding rule violation.

Category Category of the defect. For more
information on the defects covered by
a category, see the defect reference
pages.

Check Description of the defect

File File containing the instruction where
the defect occurs

Class Class containing the instruction
where the defect occurs. If the defect
is not inside a class definition, then
this column contains the entry,
Global Scope.

Function Function containing the instruction
where the defect occurs. If
the function is a method of a
class, it appears in the format
class_name::function_name.

6-38

Windows in the Results Manager Perspective

Attribute Description

Classification Level of severity you have assigned
to the defect. The possible levels are:
• High

• Medium

• Low

• Not a defect

Status Review status you have assigned to
the check. The possible statuses are:
• Fix

• Improve

• Investigate

• Justify

• No action planned

• Other

Comments Comments you have entered about
the check

To show or hide any of the columns, right-click anywhere on the column titles.
From the context menu, select or clear the title of the column that you want
to show or hide.

Using this pane, you can:

• Navigate through the checks. For more information, see “Review and
Comment Results” on page 6-16.

• Organize your check review using filters on the columns. For more
information, see “Filter and Group Results” on page 6-8.

Source
The Source pane shows the source code with the defects colored in red and
the corresponding line number marked by .

6-39

6 View Results in the Polyspace® Environment

Tooltips
Placing your cursor over a check displays a tooltip that provides range
information for variables, operands, function parameters, and return values.

Examine Source Code
In the Source pane, if you right-click a text string, the context menu provides
options to examine your code:

6-40

Windows in the Results Manager Perspective

6-41

6 View Results in the Polyspace® Environment

For example, if you right-click the variable i, you can use the following
options to examine and navigate through your code:

• Search "i" in Current Source— List occurrences of the string within the
current source file on the Search pane.

• Search "i" in All Source Files — List occurrences of the string within
the source files on the Search pane.

• Search For All References — List all references in the Search pane.
The software supports this feature for global and local variables, functions,
types, and classes.

• Go to Definition— Go to the line of code that contains the definition of i.
The software supports this feature for global and local variables, functions,
types, and classes.

• Go To Line— Open the Go to line dialog box. If you specify a line number
and click Enter, the software displays the specified line of code.

• Expand All Macros or Collapse All Macros — Display or hide the
content of macros in current source file.

Expand Macros
You can view the contents of source code macros in the source code view. A
code information bar displays icons that identify source code lines with
macros.

When you click a line with this icon, the software displays the contents of
macros on that line in a box.

6-42

Windows in the Results Manager Perspective

To display the normal source code again, click the line away from the box,
for example, on the icon.

To display or hide the content of all macros:

1 Right-click the source code view.

2 From the context menu, select either Expand All Macros or Collapse
All Macros.

Note The Check Details pane also allows you to view the contents of a
macro if the check you select lies within a macro.

Manage Multiple Files in Source Pane
You can view multiple source files in the Source pane.

Right-click on the Source pane toolbar.

6-43

6 View Results in the Polyspace® Environment

From the Source pane context menu, you can:

• Close – Close the currently selected source file.

• Close Others – Close all source files except the currently selected file.

• Close All – Close all source files.

• Next – Display the next view.

• Previous – Display the previous view.

• New Horizontal Group – Split the Source window horizontally to display
the selected source file below another file.

• New Vertical Group – Split the Source window vertically to display the
selected source file side-by-side with another file.

6-44

Windows in the Results Manager Perspective

• Floating – Display the current source file in a new window, outside the
Source pane.

View Code Block
On the Source pane, to highlight a block of code, click either its opening
or closing brace.

Note This action does not highlight the code block if the brace itself is
already highlighted. The opening brace can be highlighted, for example, by a
Dead code defect on the code block.

Check Details
The Check Details pane contains comprehensive information about a
specific defect. To see this information, on the Results Summary pane,
select the defect.

6-45

6 View Results in the Polyspace® Environment

• The top right corner shows the file and function containing the defect, in
the format file_name/function_name.

• The yellow box contains the name of the defect with an explanation of
why the defect occurs.

• The Event column lists the sequence of code instructions causing the
defect. The Scope column lists the name of the function containing the
instructions. The Line column lists the line number of the instructions.

• The Variable trace check box allows you to see an additional set of
instructions that are related to the defect.

For more information, see “View Code Sequence Causing Defect” on page 6-28.

6-46

Bug Finder Defect Categories

Bug Finder Defect Categories

In this section...

“Numerical” on page 6-47

“Static Memory” on page 6-47

“Dynamic Memory” on page 6-48

“Programming” on page 6-48

“Data-flow” on page 6-48

“Other” on page 6-48

Numerical
These defects are errors relating to variables in your code; their values, data
types, and usage. The defects include:

• Mathematical operations

• Conversion overflow

• Operational overflow

For specific defects, see “Numerical Defects”.

Static Memory
These defects are errors relating to memory usage when the memory is
statically allocated. The defects include:

• Accessing arrays outside their bounds

• Null pointers

• Casting of pointers

For specific defects, see “Static Memory Defects”.

6-47

6 View Results in the Polyspace® Environment

Dynamic Memory
These defects are errors relating to memory usage when the memory is
dynamically allocated. The defects include:

• Freeing dynamically allocated memory

• Unprotected memory allocations

For specific defects, see “Dynamic Memory Defects”.

Programming
These defects are errors relating to programming syntax. These defects
include:

• Assignment vs. equality operators

• Mismatches between variable qualifiers or declarations

• Badly formatted strings

For specific defects, see “Programming Defects”

Data-flow
These defects are errors relating to how information moves throughout your
code. The defects include:

• Dead or unreachable code

• Unused code

• Non-initialized information

For the specific defects, see “Data-flow Defects”.

Other
These defects are those that do not fit into the other categories. They can be
thing from race conditions to pass-by-value errors.

For specific defects, see “Other Defects”.

6-48

Common Weakness Enumeration from Bug Finder Defects

Common Weakness Enumeration from Bug Finder Defects
Polyspace Bug Finder lists the Common Weakness Enumeration IDs
associated with defects on the Results Summary pane. To view the IDs,
right-click a column header and select CWE ID.

The following table lists the CWE™ IDs addressed by Polyspace Bug Finder
and the corresponding defects.

CWE ID Polyspace Bug Finder Defect

119 • Array access out of bounds

• Pointer access out of bounds

120 • Invalid use of standard library
memory routine

• Invalid use of standard library
string routine

134 Format string specifiers and
arguments mismatch

170 Missing null in string array

188 • Pointer access out of bounds

• Unreliable cast of pointer

190 • Integer conversion overflow

• Integer overflow

• Shift operation overflow

• Unsigned integer overflow

191 • Integer conversion overflow

• Integer overflow

• Unsigned integer overflow

194 Sign change integer conversion
overflow

6-49

http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/134.html
http://cwe.mitre.org/data/definitions/170.html
http://cwe.mitre.org/data/definitions/188.html
http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/191.html
http://cwe.mitre.org/data/definitions/194.html

6 View Results in the Polyspace® Environment

CWE ID Polyspace Bug Finder Defect

195 • Integer conversion overflow

• Sign change integer conversion
overflow

• Unsigned integer conversion
overflow

196 • Integer conversion overflow

• Sign change integer conversion
overflow

• Unsigned integer conversion
overflow

197 Integer conversion overflow

244 Memory leak

252 Missing or invalid return statement

253 Missing or invalid return statement

366 Race conditions

367 Race conditions

369 • Float division by zero

• Integer division by zero

393 Missing or invalid return statement

394 Missing or invalid return statement

398 Write without further read

401 Memory leak

404 • Invalid deletion of pointer

• Invalid free of pointer

• Memory leak

415 Deallocation of previously
deallocated pointer

416 Use of previously freed pointer

6-50

http://cwe.mitre.org/data/definitions/195.html
http://cwe.mitre.org/data/definitions/196.html
http://cwe.mitre.org/data/definitions/197.html
http://cwe.mitre.org/data/definitions/244.html
http://cwe.mitre.org/data/definitions/252.html
http://cwe.mitre.org/data/definitions/253.html
http://cwe.mitre.org/data/definitions/366.html
http://cwe.mitre.org/data/definitions/367.html
http://cwe.mitre.org/data/definitions/369.html
http://cwe.mitre.org/data/definitions/393.html
http://cwe.mitre.org/data/definitions/394.html
http://cwe.mitre.org/data/definitions/398.html
http://cwe.mitre.org/data/definitions/401.html
http://cwe.mitre.org/data/definitions/404.html
http://cwe.mitre.org/data/definitions/415.html
http://cwe.mitre.org/data/definitions/416.html

Common Weakness Enumeration from Bug Finder Defects

CWE ID Polyspace Bug Finder Defect

456 • Non-initialized pointer

• Non-initialized variable

457 • Non-initialized pointer

• Non-initialized variable

466 Pointer access out of bounds

467 Wrong type used in sizeof

468 • Pointer access out of bounds

• Unreliable cast of pointer

476 Null pointer

481 Invalid use of = (assignment)
operator

482 Invalid use of == (equality) operator

489 Code deactivated by constant false
condition

561 • Dead code

• Uncalled function

563 Write without further read

588 Pointer access out of bounds

590 Invalid free of pointer

617 Assertion

628 Declaration mismatch

681 Float conversion overflow

685 Declaration mismatch

6-51

http://cwe.mitre.org/data/definitions/456.html
http://cwe.mitre.org/data/definitions/457.html
http://cwe.mitre.org/data/definitions/466.html
http://cwe.mitre.org/data/definitions/467.html
http://cwe.mitre.org/data/definitions/468.html
http://cwe.mitre.org/data/definitions/476.html
http://cwe.mitre.org/data/definitions/481.html
http://cwe.mitre.org/data/definitions/482.html
http://cwe.mitre.org/data/definitions/489.html
http://cwe.mitre.org/data/definitions/561.html
http://cwe.mitre.org/data/definitions/563.html
http://cwe.mitre.org/data/definitions/588.html
http://cwe.mitre.org/data/definitions/590.html
http://cwe.mitre.org/data/definitions/617.html
http://cwe.mitre.org/data/definitions/628.html
http://cwe.mitre.org/data/definitions/681.html
http://cwe.mitre.org/data/definitions/685.html

6 View Results in the Polyspace® Environment

CWE ID Polyspace Bug Finder Defect

686 Declaration mismatch

761 Invalid free of pointer

762 Invalid free of pointer

789 Unprotected dynamic memory
allocation

823 Pointer access out of bounds

824 Non-initialized pointer

873 • Invalid use of floating point
operation

• Float overflow

908 • Non-initialized pointer

• Non-initialized variable

• Invalid use of standard library
string routine

6-52

http://cwe.mitre.org/data/definitions/686.html
http://cwe.mitre.org/data/definitions/761.html
http://cwe.mitre.org/data/definitions/762.html
http://cwe.mitre.org/data/definitions/789.html
http://cwe.mitre.org/data/definitions/823.html
http://cwe.mitre.org/data/definitions/824.html
http://cwe.mitre.org/data/definitions/873.html
http://cwe.mitre.org/data/definitions/908.html

7

Command-Line Analysis

• “Run Analysis from the Command Line” on page 7-2

• “Manage Remote Analyses at the Command Line” on page 7-4

• “Create Projects Automatically from Your Build System” on page 7-6

• “Requirements for Project Creation from Build Systems” on page 7-10

7 Command-Line Analysis

Run Analysis from the Command Line

Usage of Bug Finder at the Command Line
To run an analysis from a DOS or UNIX command window, use the command
polyspace-bug-finder-nodesktop followed by other options you wish to use.

Note To run Bug Finder from the MATLAB Command Window, use the
command polyspaceBugFinder [options]

Complete Workflow Examples

Local Analysis from Build

1 Create a list of Polyspace options using the configuration tool.

polyspace-configure -c -no-project -output-options-file \
myOptions make -B myCode

2 Run Polyspace Bug Finder using the options read from your build.

polyspace-bug-finder-nodesktop -options-file myOptions \
-results-dir myResults

3 Open the results in the Bug Finder Results Manager.

polyspace-bug-finder myResults

Remote Analysis

1 Create a list of Polyspace options using the configuration tool.

polyspace-configure -c -no-project -output-options-file \
myOptions make -B myCode

2 Run Polyspace Bug Finder at the command line using the options file from
polyspace-configure.

7-2

Run Analysis from the Command Line

polyspace-bug-finder-nodesktop -batch -scheduler MJSname@host \
-options-file myOptions

7-3

7 Command-Line Analysis

Manage Remote Analyses at the Command Line
To manage remote analyses, use this command:

MATLAB_Install\polyspace\bin\polyspace-jobs-manager
action [options]

[-scheduler schedulerOption]

MATLAB_Install is your MATLAB installation folder, for example:

C:\Program Files\MATLAB\R2014a

schedulerOption is one of the following:

• Name of the computer that hosts the head node of your MDCS cluster
(NodeHost).

• Name of the MJS on the head node host (MJSName@NodeHost).

• Name of a MATLAB cluster profile (ClusterProfile).

For more information about clusters, see “Clusters and Cluster Profiles”

If you do not specify a job scheduler, polyspace-job-manager uses
the scheduler specified in the Polyspace Preferences > Server
Configuration > Job scheduler host name.

The following table lists the possible action commands to manage jobs on
the scheduler.

Action Options Task

listjobs None Generate a list of Polyspace jobs on the
scheduler. For each job, the software
produces the following information:

• ID — Verification or analysis
identifier.

• AUTHOR — Name of user that
submitted job.

7-4

Manage Remote Analyses at the Command Line

Action Options Task

• APPLICATION — Name of Polyspace
product, for example, Polyspace Code
Prover or Polyspace Bug Finder.

• LOCAL_RESULTS_DIR — Results
folder on local computer,
specified through the Options
> Preferences > Server
Configuration tab.

• WORKER— Local computer from which
job was submitted.

• STATUS— Status of job, for example,
running and completed.

• DATE — Date on which job was
submitted.

• LANG — Language of submitted
source code.

download -job ID
-results-folder
FolderPath

Download results of analysis with
specified ID to folder specified by
FolderPath.

getlog -job ID Open log for job with specified ID.

remove -job ID Remove job with specified ID.

7-5

7 Command-Line Analysis

Create Projects Automatically from Your Build System

In this section...

“Create Project in User Interface” on page 7-6

“Create Project from DOS and UNIX Command Line” on page 7-7

“Create Project from MATLAB Command Line” on page 7-8

If you use build automation scripts to build your source code, you can
automatically setup a Polyspace project from your scripts. The automatic
project setup runs your automation scripts to determine:

• Source files.

• Includes.

• Target & Compiler options.

Note In the Polyspace interface, it is possible that the created project will
not show implicit defines or includes. The configuration tool does include
them. However, they are not visible.

Create Project in User Interface

1 Select File > New Project.

2 On the Project – Properties dialog box, under Project Configuration,
select Create from build command.

3 On the next window, enter the following information:

7-6

Create Projects Automatically from Your Build System

Field Description

Specify
command used
for building
your source files

Specify:

• Name of your build automation script.

Example:make -B

• Full path to an executable such as Visual Studio.

Example:"C:\Program Files
(x86)\Microsoft Visual Studio
10.0\Common7\IDE\VCExpress.exe".

Specify working
directory for
running build
command

Specify the directory from which you run your build
automation script.

Add advanced
configuration
options

Specify additional options for advanced tasks
such as incremental build. For the full list of
options, see the -options value argument for
polyspaceConfigure.

4 Click .

• If you entered your build command, Polyspace runs the command and
sets up a project.

• If you entered the path to an executable, the executable runs. Build
your source code and close the executable. Polyspace traces your build
and sets up a project.

For example, in Visual Studio 2010, use Tools > Rebuild Solution to
build your source code. Then close Visual Studio.

5 If you updated your build command, you can recreate the Polyspace project
from the updated command. To recreate an existing project, on the Project
Browser, right-click the project name and select Update Project.

Create Project from DOS and UNIX Command Line
Use the polyspace-configure command to trace your build automation
scripts. You can use the trace information to:

7-7

7 Command-Line Analysis

• Create a Polyspace project. You can then open the project in the user
interface.

Example: If you use the command make targetName buildOptions to
build your source code, use the following command to create a Polyspace
project myProject.psprj from your makefile:

polyspace-configure -prog myProject make -B targetName buildOptions

• Create an options file. You can then use the options file to run verification
on your source code from the command-line.

Example: If you use the command make targetName buildOptions to
build your source code, use the following commands to create an options
file myOptions from your makefile:

polyspace-configure -no-project -output-options-file
myOptions ...

make -B targetName buildOptions

Use the options file to run verification:

polyspace-bug-finder-nodesktop -options-file myOptions

For more information on advanced options for polyspace-configure, see the
-options value argument for polyspaceConfigure.

Create Project from MATLAB Command Line
Use the polyspaceConfigure command to trace your build automation
scripts. You can use the trace information to:

• Create a Polyspace project. You can then open the project in the user
interface.

Example: If you use the command make targetName buildOptions to
build your source code, use the following command to create a Polyspace
project myProject.psprj from your makefile:

polyspaceConfigure -prog myProject ...
make -B targetName buildOptions

7-8

Create Projects Automatically from Your Build System

• Create an options file. You can then use the options file to run verification
on your source code from the command-line.

Example: If you use the command make targetName buildOptions to
build your source code, use the following commands to create an options
file myOptions from your makefile:

polyspaceConfigure -no-project -output-options-file
myOptions ...

make -B targetName buildOptions

Use the options file to run verification:

polyspaceBugFinder -options-file myOptions

For more information, see polyspaceConfigure.

Related
Examples

• “Trace Visual Studio Build” on page 2-3

Concepts • “Requirements for Project Creation from Build Systems” on page 7-10

7-9

7 Command-Line Analysis

Requirements for Project Creation from Build Systems
For polyspaceConfigure to correctly trace your build and gather all your
source files:

• Your compiler must be called locally for a clean build.

• Your compiler configuration must be available to Polyspace. The compilers
currently supported are:

- Visual C++® compiler

- gcc

- clang

If your compiler does not meet these requirements, try the following:

• If your compiler performs only an incremental build, use appropriate
options to build all your source files. For example, if you use gmake, append
the -B option to force a clean build.

• If your compiler configuration is not available to Polyspace:

- Write a compiler configuration file in a specific
format. Use the option -compiler-configuration
configurationFileName to provide the configuration file
configurationFileName. You can find existing configuration files in
matlabroot\polyspace\configure\compiler_configuration\.

- Contact MathWorks Technical Support. For more information, see
“Obtain system information for technical support”.

• If you use a compiler cache such as ccache or a distributed build system
such as distmake, polyspaceconfigure cannot trace your build. You must
deactivate them.

See Also polyspaceConfigure

Related
Examples

• “Create Projects Automatically from Your Build System” on page 7-6

7-10

http://www.mathworks.com/support/?s_tid=gn_supp

8

Polyspace Bug Finder
Analysis in Simulink

• “Embedded Coder Considerations” on page 8-2

• “TargetLink Considerations” on page 8-6

• “Run Analysis on Generated Code” on page 8-8

• “View Results in the Polyspace Environment” on page 8-9

• “Identify Errors in Simulink Models” on page 8-10

8 Polyspace® Bug Finder™ Analysis in Simulink

Embedded Coder Considerations

In this section...

“Subsystems” on page 8-2

“Default Options” on page 8-2

“Recommended Polyspace® Bug Finder™ Options for Analyzing Generated
Code” on page 8-3

“Hardware Mapping Between Simulink and Polyspace” on page 8-5

Subsystems
A dialog will be presented after clicking on the Polyspace for Embedded Coder
block if multiple subsystems are present in a diagram. Simply select the
subsystem to analyze from the list. The subsystem list is generated from the
directory structure from the code that has been generated.

Default Options
For Embedded Coder® code, the software sets certain analysis options by
default.

Default options for C:

-sources path_to_source_code
-results-dir results
-D PST_ERRNO
-D main=main_rtwec __restrict__=
-I matlabroot\polyspace\include
-I matlabroot\extern\include
-I matlabroot\rtw\c\libsrc
-I matlabroot\simulink\include
-I matlabroot\sys\lcc\include
-OS-target no-predfined-OS
-ignore-constant-overflows true
-scalar-overflows-behavior wrap-around
-allow-negative-operand-in-shift true
-boolean-types boolean_T

8-2

Embedded Coder® Considerations

Default options for C++:

-sources path_to_source_code
-results-dir results
-D PST_ERRNO
-D main=main_rtwec __restrict__=
-I matlabroot\polyspace\include
-I matlabroot\extern\include
-I matlabroot\rtw\c\libsrc
-I matlabroot\simulink\include
-I matlabroot\sys\lcc\include
-OS-target no-predfined-OS
-dialect iso
-ignore-constant-overflows true
-scalar-overflows-behavior wrap-around
-allow-negative-operand-in-shift true

Note matlabroot is the MATLAB installation folder.

Recommended Polyspace Bug Finder Options for
Analyzing Generated Code
For Embedded Coder code, you can specify other analysis options for your
Polyspace Project through the Polyspace Configuration pane. To open this
pane:

1 In the Simulink® model window, select Code > Polyspace > Options.
The Polyspace pane opens.

2 Click Configure. The Project Manager opens, displaying the Polyspace
Configuration pane.

The following table describes options that you should specify in your Polyspace
project before analyzing code generated by Embedded Coder software.

8-3

8 Polyspace® Bug Finder™ Analysis in Simulink

Option Recommended Value Comments

Target & Compiler

-D See Comments Defines macro compiler flags used during
compilation. Some defines are applied by
default, depending on your -OS-target.

Use one -D for each line of the Embedded
Coder generated defines.txt file.

Polyspace does not do this by default.

-OS-target Visual Specifies the operating system target for
Polyspace stubs.

This information allows the analysis to use
system definitions during preprocessing
to analyze the included files.

-dos Selected You must select this option if the contents
of the include or source directory comes
from a DOS or Windows file system. The
option allows the analysis to deal with
upper/lower case sensitivity and control
characters issues. Concerned files are:

• Header files – All include folders
specified (-I option)

• Source files – All source files selected
for the analysis (-sources option)

8-4

Embedded Coder® Considerations

Hardware Mapping Between Simulink and Polyspace
The software automatically imports target word lengths and byte ordering
(endianess) from Simulink model hardware configuration settings. The
software maps Device vendor and Device type settings on the Simulink
Configuration Parameters > Hardware Implementation pane to
Target processor type settings on the Polyspace Configuration pane.

The software creates a generic target for the analysis.

8-5

8 Polyspace® Bug Finder™ Analysis in Simulink

TargetLink Considerations

In this section...

“TargetLink Support” on page 8-6

“Subsystems” on page 8-6

“Default Options” on page 8-6

“Lookup Tables” on page 8-7

“Code Generation Options” on page 8-7

TargetLink Support
For Windows, Polyspace Bug Finder is tested with releases 3.1, 3.2, and 3.3 of
the dSPACE® Data Dictionary version and TargetLink® Code Generator.

As Polyspace Bug Finder extracts information from the dSPACE Data
Dictionary, you must regenerate the code before performing an analysis.

Subsystems
A dialog will be presented after clicking on the Polyspace for TargetLink
block if multiple subsystems are present in a diagram. Simply select the
subsystem to analyze from the list.

Default Options
The following default options are set by the tool:

-sources path_to_source_code
-results-dir results
-I path to source code
-D PST_ERRNO
-I dspaceroot\matlab\TL\SimFiles\Generic
-I dspaceroot\matlab\TL\srcfiles\Generic
-I dspaceroot\matlab\TL\srcfiles\i86\LCC
-I matlabroot\polyspace\include
-I matlabroot\extern\include
-I matlabroot\rtw\c\libsrc

8-6

TargetLink® Considerations

-I matlabroot\simulink\include
-I matlabroot\sys\lcc\include
-OS-target no-predfined-OS
-ignore-constant-overflows true
-scalar-overflows-behavior wrap-around
-boolean-types Bool

Note dspaceroot and matlabroot are the dSPACE and MATLAB tool
installation directories respectively.

Lookup Tables
The tool by default provides stubs for the lookup table functions. This
behavior can be disabled from the Polyspace menu. The dSPACE data
dictionary is used to define the range of their return values. Note that a
lookup table that uses extrapolation will return full range for the type of
variable that it returns.

Code Generation Options
From the TargetLink Main Dialog, it is recommended to set the option Clean
code and deselect the option Enable sections/pragmas/inline/ISR/user
attributes.

When installing Polyspace, the tlcgOptions variable has been
updated with 'PolyspaceSupport', 'on' (see variable in
'C:\dSPACE\Matlab\Tl\config\codegen\tl_pre_codegen_hook.m' file).

8-7

8 Polyspace® Bug Finder™ Analysis in Simulink

Run Analysis on Generated Code
You can generate Embedded Coder code from the configured model
psdemo_model_link_sl. You can then run a Polyspace analysis on the
generated code.

To open psdemo_model_link_sl in the Simulink model window:

1 In the MATLAB Command Window, enter psdemo_model_link_sl.

This command opens the psdemo_model_link_sl model that is
compatible with your version of MATLAB (either psdemo_model_link_sl,
psdemo_model_link_sl_v1, or psdemo_model_link_sl_v2).

To generate code and start the Polyspace analysis:

1 Double-click the Re-install the demo block to generate the handwritten
code related to the S-function.

2 If you want to apply data ranges to the input parameters, double-click the
green block Use input constraints. To remove the data range constraints,
double-click the orange block Worst case inputs.

3 Right-click the subsystem controller.

4 From the context-menu, select C/C++ Code > Build This Subsystem.

5 In the Build code for Subsystem dialog box, click Build to generate code.
When the code generation is complete, the code generation report opens.

6 Right-click the subsystem controller. From the context menu, select
Polyspace > Verify Code Generated for > Selected Subsystem. The
analysis starts.

You can monitor progress from the Command Window.

Once the analysis is complete, to display the results:

1 Right-click the subsystem controller. From the context menu, select
Polyspace > Open Results. The results open in the Polyspace Bug
Finder interface.

8-8

View Results in the Polyspace® Environment

View Results in the Polyspace Environment
When a Polyspace run completes, you can view the results using the Results
Manager perspective of the Polyspace environment.

1 From the Simulink model window, select Code > Polyspace > Open
Results.

• If you set Model reference verification depth to All and selected
Model by model verification, the Select the Result Folder to Open
in Polyspace dialog box opens. The dialog box displays a hierarchy of
referenced models from which the software generates code. To view the
analysis results for a specific model, select the model from the hierarchy.
Then click OK.

• You can also open results for a Model block or subsystem by right-clicking
the Model block or subsystem, and from the context menu, select
Polyspace > Open Results.

After a few seconds, the Results Manager perspective of the Polyspace
environment opens.

2 On theResults Summary tab, click a check to view additional information.

The Check Details pane shows information about defect, and the Source
pane shows the source code containing the defect.

For more information on reviewing defects, see “View Results”.

For information on specific checks, see “Polyspace Bug Finder Defects”.

Note If you selected Add to results repository the results are stored on
the Polyspace Metrics server. For more information, see “Download Results
From Polyspace Metrics” on page 6-5.

8-9

8 Polyspace® Bug Finder™ Analysis in Simulink

Identify Errors in Simulink Models
With Polyspace Bug Finder, you can trace your analysis results directly to
your Simulink model.

Consider the following model.

where the Check Details pane shows information about an Invalid use of
floating point operation defect, and the Source pane shows the source code
containing error.

This defect highlights a problem comparing the signals from the inports In1
and In2. To fix this issue, you must return to the model.

To trace this run-time check to the model:

1 Click the blue underlined link (<Root>/Relational Operator)
immediately before the check in the Source pane. The Simulink model
opens, highlighting the block with the error.

2 Examine the model to find the cause of the check.

In this example, the highlighted block determines whether two signals
are equal. In this case the signals are floating points, so the operation is
imprecise. This could be a flaw in specifications; if the model is supposed
to work for specific input types, you can provide these details using block
parameters.

Specifying these details should fix the defect.

8-10

Identify Errors in Simulink® Models

If your operating system is Windows Vista™ or Windows 7, you may
encounter problems with the link-back functionality if one of the following
conditions apply:

• User Account Control (UAC) is enabled.

• You do not have administrator privileges.

If you have a MATLAB session running and your model is open, a possible
workaround is:

1 Open a DOS window in administrator mode.

2 Go to your MATLAB installation folder.

3 From the bin folder, enter matlab -regserver.

4 Click the link again.

If your model extensively uses block coloring, the coloring from this feature
may interfere with the colors already in your model. To change the color of
blocks when they are linked to Polyspace results use this command:

HILITEDATA = struct('HiliteType', 'find', 'ForegroundColor', 'black', ...
'BackgroundColor', color);

set_param(0, 'HiliteAncestorsData', HILITEDATA);

Where color is one of the following:

• 'cyan'

• 'magenta'

• 'orange'

• 'lightBlue'

• 'red'

• 'green'

• 'blue'

8-11

8 Polyspace® Bug Finder™ Analysis in Simulink

• 'darkGreen'

8-12

9

Configure Model for Code
Analysis

• “Model Configuration for Code Generation and Analysis” on page 9-2

• “Configure Simulink Model” on page 9-3

• “Recommended Model Settings for Code Analysis” on page 9-5

• “Check Simulink Model Settings” on page 9-7

• “Check Simulink Model Settings Before Code Generation” on page 9-8

• “Check Simulink Model Settings Before Analysis” on page 9-10

• “Annotate Blocks for Known Errors or Coding-Rule Violations” on page 9-12

9 Configure Model for Code Analysis

Model Configuration for Code Generation and Analysis
To facilitate Polyspace code analysis and the review of results:

• There are certain settings that you should apply to your model before
generating code. See “Recommended Model Settings for Code Analysis”
on page 9-5.

• The Polyspace plug-in for Simulink software allows you to check your
model configuration before starting the Polyspace software. See “Check
Simulink Model Settings” on page 9-7

• You can highlight blocks that you know contain checks or coding rule
violations. See “Annotate Blocks for Known Errors or Coding-Rule
Violations” on page 9-12.

9-2

Configure Simulink® Model

Configure Simulink Model
To configure a Simulink model for code generation and analysis:

1 Open Model Explorer.

2 From the Model Hierarchy tree, expand the model node.

3 Select Configuration > Code Generation, which displays Code
Generation configuration parameters.

4 Select the General tab, and then set the System target file to ert.tlc
(Embedded Coder).

5 In the Report tab, select:

• Create code-generation report

• Code-to-model navigation.

6 In the Templates tab, clear Generate an example main program.

7 In the Interface tab, select Suppress error status in real-time model
data structure.

8 Click Apply.

9 Select Configuration > Solver, which displays Solver configuration
parameters.

10 In the Solver options section, set:

• Type to Fixed-step.

• Solver to discrete (no continuous states).

11 Click Apply.

12 Select Configuration > Optimization, which displays Optimization
configuration parameters. Then:

• On the General tab, in the Data initialization section, select the
Remove root level I/O zero initialization check box.

9-3

9 Configure Model for Code Analysis

• On the General tab, clear the Use memset to initialize floats and
doubles to 0.0 check box

• On the Signals and Parameters tab, in the Simulation and code
generation section, select the Inline parameters check box.

13 Save your model.

9-4

Recommended Model Settings for Code Analysis

Recommended Model Settings for Code Analysis
For Polyspace analyses, you should configure your model with the following
settings before generating code.

Parameter Recommended
value

How you specify value in
Configuration Parameters
dialog box

If you do
not use
recommended
value...

InitFltsAndDblsTo
Zero

'on' Select check box
Optimization > Use
memset to initialize floats
and doubles to 0.0

Warning

InlineParams 'on' Select check box
Optimization > Signals
and Parameters > Inline
parameters

Warning

MatFileLogging 'off' Clear check box Code
Generation > Interface >
MAT-file logging

Warning

Solver 'FixedStepDiscrete' Select discrete (no
continuous states) from
Solver > Solver drop-down
list

Warning

SystemTargetFile 'ert.tlc' Specify ert.tlc (for
Embedded Coder) in Code
Generation > System
target file

Error

9-5

9 Configure Model for Code Analysis

Parameter Recommended
value

How you specify value in
Configuration Parameters
dialog box

If you do
not use
recommended
value...

GenerateComments 'on' Select check box Code
Generation > Comments > Include
Comments

Error

ZeroExternalMemory
AtStartup

'off' when
Configuration
Parameters >
Polyspace > Data
Range
Management >
Output is Global
assert

Clear check box
Optimization > Remove
root level I/O zero
initialization

Warning

9-6

Check Simulink® Model Settings

Check Simulink Model Settings
With the Polyspace plug-in, you can check your model settings before starting
an analysis.

1 From the Simulink model window, select Code > Polyspace > Options.
The Configuration Parameters dialog box opens, displaying the Polyspace
pane.

2 Click Check configuration. If your model settings are not optimal for
Polyspace, the software displays warning messages with recommendations.

You can also set the configuration check to run before you run an analysis.

If you alter your model settings, rebuild the model to generate fresh code. If
the generated code version does not match your model version, the software
produces warnings when you run the analysis.

Related
Examples

• “Check Simulink Model Settings Before Analysis” on page 9-10

Concepts • “Recommended Model Settings for Code Analysis” on page 9-5

9-7

9 Configure Model for Code Analysis

Check Simulink Model Settings Before Code Generation
Before generating code, you can check your model settings against the
“Recommended Model Settings for Code Analysis” on page 9-5.

1 From the Simulink model window, select Code > C/C++ Code > Code
Generation Options. The Configuration Parameters dialog box opens,
displaying the Code Generation pane.

2 Select Set Objectives.

3 From the Set Objective – Code Generation Advisor window, add the
Polyspace objective and any others that you want to check.

4 From the Check model before generating code drop-down list, select
either:

• On (stop for warnings)

• On (proceed with warnings)

5 Select Build or Generate Code.

The software runs a configuration check. If your configuration check finds
errors or warnings, the Diagnostics Viewer displays the issues and
recommendations.

9-8

Check Simulink® Model Settings Before Code Generation

If you select:

• On (stop for warnings), the process stops for either errors or
warnings without generating code.

• On (proceed with warnings) — the process stops for errors, but
continues generating code if the configuration only has warnings.

Related
Examples

• “Check Simulink Model Settings Before Analysis” on page 9-10
• “Check Simulink Model Settings” on page 9-7

Concepts • “Recommended Model Settings for Code Analysis” on page 9-5

9-9

9 Configure Model for Code Analysis

Check Simulink Model Settings Before Analysis
With the Polyspace plug-in, you can check your model settings before starting
an analysis:

1 From the Simulink model window, select Code > Polyspace > Options.
The Configuration Parameters dialog box opens, displaying the Polyspace
pane.

2 From the Check configuration before verification menu, select either:

• On (stop for warnings) — will

• On (proceed with warnings)

3 Select Run verification.

The software runs a configuration check. If your configuration check finds
errors or warnings, the Diagnostics Viewer displays the issues and
recommendations.

If you select:

• On (stop for warnings), the analysis stops for either errors or
warnings.

9-10

Check Simulink® Model Settings Before Analysis

• On (proceed with warnings) — the analysis stops for errors, but
continues the code analysis if the configuration only has warnings.

If you alter your model settings, rebuild the model to generate fresh code. If
the generated code version does not match your model version, the software
produces warnings when you run the analysis.

Related
Examples

• “Check Simulink Model Settings” on page 9-7

Concepts • “Recommended Model Settings for Code Analysis” on page 9-5

9-11

9 Configure Model for Code Analysis

Annotate Blocks for Known Errors or Coding-Rule
Violations

You can annotate individual blocks in your Simulink model to inform
Polyspace software of known defects, run-time checks, or coding-rule
violations. This allows you to highlight and categorize previously identified
results, so you can focus on reviewing new results.

The Polyspace Results Manager perspective displays the information that
you provide with block annotations.

1 In the Simulink model window, right-click the block you want to annotate.

2 From the context menu, select Polyspace > Annotate Selected
Block > Edit. The Polyspace Annotation dialog box opens.

9-12

Annotate Blocks for Known Errors or Coding-Rule Violations

3 From the Annotation type drop-down list, select one of the following:

• Check— To indicate a Code Prover run-time error

• Defect — To indicate a Bug Finder defect

• MISRA-C— To indicate a MISRA C coding rule violation

• MISRA-C++— To indicate a MISRA C++ coding rule violation

• JSF — To indicate a JSF C++ coding rule violation

4 If you want to highlight only one kind of result, select Only 1 check and
the relevant error or coding rule from the Select RTE check kind (or
Select defect kind, Select MISRA rule, Select MISRA C++ rule, or
Select JSF rule) drop-down list.

9-13

9 Configure Model for Code Analysis

If you want to highlight a list of checks, clear Only 1 check. In the Enter
a list of checks (or Enter a list of defects, or Enter a list of rule
numbers) field, specify the errors or rules that you want to highlight.

5 Select a Status to describe how you intend to address the issue:

• Fix

• Improve

• Investigate

• Justify with annotations

(This status also marks the result as justified.)

• No Action Planned

(This status also marks the result as justified.)

• Other

• Restart with different options

• Undecided

6 Select a Classification to describe the severity of the issue:

• High

• Medium

• Low

• Not a defect

7 In the Comment field, enter additional information about the check.

8 Click OK. The software adds the Polyspace annotation is to the block.

9-14

Annotate Blocks for Known Errors or Coding-Rule Violations

9-15

9 Configure Model for Code Analysis

9-16

10

Configure Code Analysis
Options

• “Polyspace Configuration for Generated Code” on page 10-2

• “Include Handwritten Code” on page 10-3

• “Specify Remote Analysis” on page 10-5

• “Configure Analysis Depth for Referenced Models” on page 10-6

• “Specify Location of Results” on page 10-7

• “Check Coding Rules Compliance” on page 10-8

• “Configure Polyspace Options from Simulink” on page 10-10

• “Configure Polyspace Project Properties” on page 10-11

• “Create a Polyspace Configuration File Template” on page 10-12

• “Specify Header Files for Target Compiler” on page 10-15

• “Open Polyspace Results Automatically” on page 10-16

• “Remove Polyspace Options From Simulink Model” on page 10-17

10 Configure Code Analysis Options

Polyspace Configuration for Generated Code
You do not have to manually create a Polyspace project or specify Polyspace
options before running an analysis for your generated code. By default,
Polyspace automatically creates a project and extracts the required
information from your model. However, you can modify or specify additional
options for your analysis:

• You may incorporate separately created code within the code generated
from your Simulink model. See “Include Handwritten Code” on page 10-3.

• You may customize the options for your analysis. For example, to specify
the target environment or adjust precision settings. See “Configure
Polyspace Options from Simulink” on page 10-10 and “Recommended
Polyspace® Bug Finder™ Options for Analyzing Generated Code” on page
8-3.

• You may create specific configurations for batch runs. See “Create a
Polyspace Configuration File Template” on page 10-12.

• If you want to analyze code generated for a 16-bit target processor, you
must specify header files for your 16-bit compiler. See “Specify Header
Files for Target Compiler” on page 10-15.

10-2

Include Handwritten Code

Include Handwritten Code
Files such as S-function wrappers are, by default, not part of the Polyspace
analysis. However, you can add these files manually.

1 From the Simulink model window, select Code > Polyspace > Options.
The Configuration Parameters dialog box opens, displaying the Polyspace
pane.

2 Select the Enable additional file list check box. Then click Select files.
The Files Selector dialog box opens.

3 Click Add. The Select files to add dialog box opens.

4 Use the Select files to add dialog box to:

• Navigate to the relevant folder

• Add the required files.

The software displays the selected files as a list under Additional files
to analyze.

10-3

10 Configure Code Analysis Options

Note To remove a file from the list, select the file and click Remove. To
remove all files from the list, click Remove all.

5 Click OK.

10-4

Specify Remote Analysis

Specify Remote Analysis
By default, the Polyspace software runs locally. To specify a remote analysis:

1 From the Simulink model window, select Code > Polyspace > Options.
The Configuration Parameters dialog box opens, displaying the Polyspace
pane.

2 Select Configure.

3 In the Polyspace Configuration window, select the Distributed
Computing pane.

4 Select the Batch checkbox.

5 Close the configuration window and save your changes.

6 Select Apply.

10-5

10 Configure Code Analysis Options

Configure Analysis Depth for Referenced Models
From the Polyspace pane, you can specify the analysis of generated code
with respect to model reference hierarchy levels:

• Model reference verification depth— From the drop-down list, select
one of the following:

- Current model only — Default. The Polyspace runs code from the
top level only. The software creates stubs to represent code from lower
hierarchy levels.

- 1 — The software analyzes code from the top level and the next level.
For subsequent hierarchy levels, the software creates stubs.

- 2 — The software analyzes code from the top level and the next two
hierarchy levels. For subsequent hierarchy levels, the software creates
stubs.

- 3 — The software analyzes code from the top level and the next three
hierarchy levels. For subsequent hierarchy levels, the software creates
stubs.

- All — The software analyzes code from the top level and all lower
hierarchy levels.

• Model by model verification — Select this check box if you want the
software to analyze code from each model separately.

Note The same configuration settings apply to all referenced models within a
top model. It does not matter whether you open the Polyspace pane from the
top model window (Code > Polyspace > Options) or through the right-click
context menu of a particular Model block within the top model. However, you
can run analyses for code generated from specific Model blocks. See “Run
Analysis for Embedded Coder” on page 11-5.

10-6

Specify Location of Results

Specify Location of Results
1 From the Simulink model window, select Code > Polyspace > Options.
The Configuration Parameters dialog box opens with the Polyspace pane
displayed.

2 In the Output folder field, specify the full path for your
results folder. By default, the software stores results in
C:\Polyspace_Results\results_model_name.

3 If you want to avoid overwriting results from previous analyses, select
the Make output folder name unique by adding a suffix check box.
Instead of overwriting an existing folder, the software specifies a new
location for the results folder by appending a unique number to the folder
name.

10-7

10 Configure Code Analysis Options

Check Coding Rules Compliance
You can check compliance with MISRA C and MISRA AC AGC coding rules
directly from your Simulink model.

In addition, you can choose to run coding rules checking either with or without
full code analysis.

To configure coding rules checking:

1 From the Simulink model window, select Code > Polyspace > Options.
The Polyspace pane opens.

2 In the Settings from drop-down menu, select the type of analysis you
want to perform.

Depending on the type of code generated, different settings are available.
The following tables describe the different settings.

C Code Settings

Setting Description

Project configuration Run Polyspace using the
options specified in the Project
configuration.

Project configuration and
MISRA AC AGC rule checking

Run Polyspace using the options
specified in the Project
configuration and check
compliance with the MISRA
AC-AGC rule set.

Project configuration and
MISRA rule checking

Run Polyspace using the options
specified in the Project
configuration and check
compliance with MISRA C
coding rules.

10-8

Check Coding Rules Compliance

C Code Settings (Continued)

Setting Description

MISRA AC AGC rule checking Check compliance with the MISRA
AC-AGC rule set. Polyspace stops
after rules checking.

MISRA rule checking Check compliance with MISRA C
coding rules. Polyspace stops after
rules checking.

C++ Code Settings

Setting Description

Project configuration Run Polyspace using the
options specified in the Project
configuration.

Project configuration and
MISRA C++ rule checking

Run Polyspace using the options
specified in the Project
configuration and check
compliance with the MISRA
C++ coding rules.

Project configuration and JSF
C++ rule checking

Run Polyspace using the options
specified in the Project
configuration and check
compliance with JSF C++ coding
rules.

MISRA C++ rule checking Check compliance with the MISRA
C++ coding rules. Polyspace stops
after rules checking.

JSF C++ rule checking Check compliance with JSF C++
coding rules. Polyspace stops after
rules checking.

3 Click Apply to save your settings.

10-9

10 Configure Code Analysis Options

Configure Polyspace Options from Simulink
From Simulink, you can use a simplified version of the Polyspace Project
Manager to customize Polyspace options. For example, you can specify the
target processor type, target operating system, and compilation flags.

To open the Configuration pane of the Project Manager:

1 From the Simulink model window, select Code > Polyspace > Options.
The Polyspace pane opens.

2 Click Configure. The Polyspace Configuration pane opens.

The first time you open the configuration, the software sets the following
options:

• Target operating system (-OS-target) – Set to no-predefined-OS

• Use result folder (-results-dir) – Set to results_modelname

The software also configures other options automatically, but the settings
depend on the code generator used.

3 Set other options required by your application.

For descriptions of advanced options, see “Analysis Options for C” or
“Analysis Options for C++”.

10-10

Configure Polyspace® Project Properties

Configure Polyspace Project Properties
You can specify project properties, for example, your project name, through
the Polyspace Project - Properties dialog box. To open this dialog box:

1 From the Simulink model window, select Code > Polyspace > Options.
The Polyspace pane opens.

2 Click Configure. The Polyspace configuration window opens.

3 On the Project Manager toolbar, click the Project properties icon .

10-11

10 Configure Code Analysis Options

Create a Polyspace Configuration File Template
During a batch run, you may want use different configurations. At the
MATLAB command-line, use pslinkfun('settemplate',...) to apply a
configuration defined by a configuration file template.

To create a configuration file template:

1 In the Simulink model window, select Code > Polyspace > Options.
The Polyspace pane opens.

2 Click Configure. The Project Manager opens, displaying the
Configuration pane. Use this pane to customize the target and cross
compiler.

3 From the Configuration tree, expand the Target & Compiler node.

4 In the Target Environment section, use the Target processor type
option to define the size of data types.

a From the drop-down list, select mcpu...(Advanced). The Generic target
options dialog box opens.

10-12

Create a Polyspace® Configuration File Template

Use this dialog box to create a new target and specify data types for the
target. Then click Save.

5 From the Configuration tree, select Target & Compiler > Macros. Use
the Preprocessor definitions section to define preprocessor macros for
your cross-compiler.

To add a macro, in the Macros table, click the + button. In the new line,
enter the required text.

To remove a macro, select the macro and click the - button.

Note If you use the LCC cross-compiler, then you must specify the
MATLAB_MEX_FILE macro.

6 Save your changes and close the Project Manager.

10-13

10 Configure Code Analysis Options

7 Make a copy of the updated project configuration file, for example,
my_first_code_polyspace.psprj.

8 Rename the copy, for example, my_cross_compiler.psprj. This is your
new configuration file template.

To use a configuration template, run the pslinkfun command in the MATLAB
Command Window. For example:

pslinkfun('settemplate','C:\Work\my_cross_compiler.psprj')

10-14

Specify Header Files for Target Compiler

Specify Header Files for Target Compiler
If you want to analyze code generated for a 16-bit target processor, you must
specify header files for your 16-bit compiler. The software automatically
identifies the compiler from the Simulink model. If the compiler is 16-bit and
you do not specify the relevant header files, the software produces an error
when you try to run an analysis.

Note For a 32-bit or 64-bit target processor, the software automatically
specifies the default header file.

To specify header file folders (or header files) for your compiler:

1 Open the Polyspace Configuration pane. From the Simulink model
window, select Code > Polyspace > Options. The Polyspace pane opens.

2 Click Configure. The Project Manager opens, displaying the
Configuration pane.

3 From the Configuration tree, expand the Target & Compiler node.

4 Select Target & Compiler > Environment Settings.

5 In the Include folders (or Include) section, specify a folder (or header
file) path by doing one of the following:

• Click the + button. Then, in the text field, enter the folder (or file) path.

• Click the folder button and use the Open file dialog box to navigate to
the required folder (or file).

You can remove an item from the displayed list by selecting the item
and then clicking -.

10-15

10 Configure Code Analysis Options

Open Polyspace Results Automatically
You can configure the software to automatically open your Polyspace results
after you start the analysis. If you are doing a remote analysis, the Polyspace
Metrics webpage opens. When the remote job is complete, you can download
your results from Polyspace Metrics. If you are doing a local analysis, when
the local job is complete, the Polyspace environment opens the results in the
Results Manager perspective.

To configure the results to open automatically:

1 From the model window, select Code > Polyspace > Options.

The Polyspace pane opens.

2 In the Results review section, select Open results automatically after
verification.

3 Click Apply to save your settings.

10-16

Remove Polyspace® Options From Simulink® Model

Remove Polyspace Options From Simulink Model
You can remove Polyspace configuration information from your Simulink
model.

For a top model:

1 Select Code > Polyspace > Remove Options from Current
Configuration.

2 Save the model.

For a Model block or subsystem:

1 Right-click the Model block or subsystem.

2 From the context menu, select Polyspace > Remove Options from
Current Configuration.

3 Save the model.

10-17

10 Configure Code Analysis Options

10-18

11

Run Polyspace on
Generated Code

• “Specify Type of Analysis to Perform” on page 11-2

• “Run Analysis for Embedded Coder” on page 11-5

• “Run Analysis for TargetLink” on page 11-7

• “Monitor Progress” on page 11-8

11 Run Polyspace® on Generated Code

Specify Type of Analysis to Perform
Before running Polyspace, you can specify what type of analysis you want to
run. You can choose to run code analysis, coding rules checking, or both.

To specify the type of analysis to run:

1 From the Simulink model window, select Code > Polyspace > Options.
The Configuration Parameter window opens to the Polyspace options
pane.

2 In the Settings from drop-down menu, select the type of analysis you
want to perform.

Depending on the type of code generated, different settings are available.
The following tables describe the different settings.

11-2

Specify Type of Analysis to Perform

C Code Settings

Setting Description

Project configuration Run Polyspace using the
options specified in the Project
configuration.

Project configuration and
MISRA AC AGC rule checking

Run Polyspace using the options
specified in the Project
configuration and check
compliance with the MISRA
AC-AGC rule set.

Project configuration and
MISRA rule checking

Run Polyspace using the options
specified in the Project
configuration and check
compliance with MISRA C
coding rules.

MISRA AC AGC rule checking Check compliance with the MISRA
AC-AGC rule set. Polyspace stops
after rules checking.

MISRA rule checking Check compliance with MISRA C
coding rules. Polyspace stops after
rules checking.

C++ Code Settings

Setting Description

Project configuration Run Polyspace using the
options specified in the Project
configuration.

Project configuration and
MISRA C++ rule checking

Run Polyspace using the options
specified in the Project
configuration and check
compliance with the MISRA
C++ coding rules.

11-3

11 Run Polyspace® on Generated Code

C++ Code Settings (Continued)

Setting Description

Project configuration and JSF
C++ rule checking

Run Polyspace using the options
specified in the Project
configuration and check
compliance with JSF C++ coding
rules.

MISRA C++ rule checking Check compliance with the MISRA
C++ coding rules. Polyspace stops
after rules checking.

JSF C++ rule checking Check compliance with JSF C++
coding rules. Polyspace stops after
rules checking.

3 Click Apply to save your settings.

11-4

Run Analysis for Embedded Coder®

Run Analysis for Embedded Coder
To start Polyspace with:

• Code generated from the top model, from the Simulink model window,
select Code > Polyspace > Verify Code Generated for > Model.

• All code generated as model referenced code, from the model window, select
Code > Polyspace > Verify Code Generated for > Referenced Model.

• Model reference code associated with a specific block or subsystem,
right-click the Model block or subsystem. From the context menu, select
Verify Code Generated for > Selected Subsystem.

Note You can also start the Polyspace software from the Polyspace
configuration parameter pane by clicking Run verification.

When the Polyspace software starts, messages appear in the MATLAB
Command window:

Starting Polyspace verification for Embedded Coder

Creating results folder C:\PolySpace_Results\results_my_first_code

for system my_first_code

Checking Polyspace Model-Link Configuration:

Parameters used for code verification:

System : my_first_code

Results Folder : C:\PolySpace_Results\results_my_first_code

Additional Files : 0

Remote : 0

Model Reference Depth : Current model only

Model by Model : 0

DRS input mode : DesignMinMax

DRS parameter mode : None

DRS output mode : None

...

Follow the progress of the analysis in the MATLAB Command window. If you
are running a remote, batch, analysis you can follow the later stages through
the Polyspace Queue Manager.

11-5

11 Run Polyspace® on Generated Code

The software writes status messages to a log file in the results folder, for
example Polyspace_R2013b_my_first_code_05_16_2013-18h40.log

11-6

Run Analysis for TargetLink®

Run Analysis for TargetLink
To start the Polyspace software:

1 In your model, select the Target Link subsystem.

2 In the Simulink model window select Code > Polyspace > Verify Code
Generated for > Selected Target Link Subsystem.

Messages appear in the MATLAB Command window:

Starting Polyspace verification for Embedded Coder

Creating results folder results_WhereAreTheErrors_v2

for system WhereAreTheErrors_v2

Parameters used for code verification:

System : WhereAreTheErrors_v2

Results Folder : H:\Desktop\Test_Cases\ModelLink_Testers

\results_WhereAreTheErrors_v2

Additional Files : 0

Verifier settings : PrjConfig

DRS input mode : DesignMinMax

DRS parameter mode : None

DRS output mode : None

Model Reference Depth : Current model only

Model by Model : 0

The exact messages depend on the code generator you use
and the Polyspace product. The software writes status
messages to a log file in the results folder, for example
Polyspace_R2013b_my_first_code_05_16_2013-18h40.log

Follow the progress of the software in the MATLAB Command Window. If
you are running a remote, batch analysis, you can follow the later stages
through the Polyspace Queue Manager

11-7

11 Run Polyspace® on Generated Code

Monitor Progress

In this section...

“Local Analyses” on page 11-8

“Remote Batch Analyses” on page 11-8

Local Analyses
For a local Polyspace runs, you can follow the progress of the software in the
MATLAB Command Window. The software also saves the status messages to
a log file in the results folder. For example:

Polyspace_R2013b_my_first_code_05_16_2013-18h40.log

Remote Batch Analyses
For a remote analysis, you can follow the initial stages of the analysis in the
MATLAB Command window.

Once the compilation phase is complete, you can follow the progress of the
software using the Polyspace Queue Manager.

From Simulink, select Code > Polyspace > Open Spooler

11-8

12

Check Coding Rules from
Eclipse

• “Activate Coding Rules Checker” on page 12-2

• “Select Specific MISRA or JSF Coding Rules” on page 12-6

• “Create Custom Coding Rules File” on page 12-8

• “Contents of Custom Coding Rules File” on page 12-10

• “Exclude Files from Rules Checking” on page 12-12

• “Allow Custom Pragma Directives” on page 12-13

• “Specify Boolean Types” on page 12-14

• “Find Coding Rule Violations” on page 12-15

• “Review Coding Rule Violations” on page 12-16

• “Apply Coding Rule Violation Filters” on page 12-18

12 Check Coding Rules from Eclipse

Activate Coding Rules Checker
This example shows how to activate the coding rules checker before you start
an analysis. This activation enables the Polyspace Bug Finder plug-in to
search for coding rule violations. You can view the coding rule violations in
your analysis results.

1 Open project configuration.

2 In the Configuration tree view, select Coding Rules.

3 Select the check box for the type of coding rules that you want to check.

For C code, you can check compliance with:

• MISRA C:2004

• MISRA AC AGC

• Custom coding rules
For C++ code, you can check compliance with:

• MISRA C++

• JSF C++

• Custom coding rules

12-2

Activate Coding Rules Checker

4 For each rule type that you select, from the drop-down list, select the
subset of rules to check.

MISRA C:2004

Option Description

required-rules All required MISRA C coding rules.

all-rules All required and advisory MISRA C coding rules.

SQO-subset1
A small subset of MISRA C rules. In Polyspace
Code Prover, observing these rules can reduce the
number of unproven results.

SQO-subset2

A second subset of rules that include the rules
in SQO-subset1 and contain some additional
rules. In Polyspace Code Prover, observing the
additional rules can further reduce the number of
unproven results.

custom A set of MISRA C coding rules that you specify.

MISRA AC AGC

Option Description

OBL-rules All required MISRA AC AGC coding rules.

OBL-REC-rules
All required and recommended MISRA AC AGC
coding rules.

all-rules
All required, recommended, and readability
coding rules.

SQO-subset1
A small subset of MISRA AC AGC rules. In
Polyspace Code Prover, observing these rules can
reduce the number of unproven results.

12-3

12 Check Coding Rules from Eclipse

Option Description

SQO-subset2

A second subset of MISRA AC AGC rules that
include the rules in SQO-subset1 and contain
some additional rules. In Polyspace Code Prover,
observing the additional rules can further reduce
the number of unproven results.

custom
A set of MISRA AC AGC coding rules that you
specify.

MISRA C++

Option Description

required-rules All required MISRA C++ coding rules.

all-rules
All required and advisory MISRA C++ coding
rules.

SQO-subset1
A small subset of MISRA C++ rules. In Polyspace
Code Prover, observing these rules can reduce the
number of unproven results.

SQO-subset2

A second subset of rules with indirect impact on
the selectivity in addition to SQO-subset1. In
Polyspace Code Prover, observing the additional
rules can further reduce the number of unproven
results.

custom A specified set of MISRA C++ coding rules.

JSF C++

Option Description

shall-rules Shall rules are mandatory requirements. These
rules require verification.

shall-will-rules All Shall andWill rules. Will rules are intended
to be mandatory requirements. However, these
rules do not require verification.

12-4

Activate Coding Rules Checker

Option Description

all-rules All Shall,Will, and Should rules. Should rules
are advisory rules.

custom A set of JSF C++ coding rules that you specify.

5 If you select Check custom rules, specify the path to your custom rules
file or click Edit to create one.

When rules checking is complete, the software displays the coding rule
violations in purple on the Results Summary pane.

Related
Examples

• “Select Specific MISRA or JSF Coding Rules” on page 12-6
• “Create Custom Coding Rules File” on page 12-8

12-5

12 Check Coding Rules from Eclipse

Select Specific MISRA or JSF Coding Rules
This example shows how to specify a subset of MISRA or JSF rules for the
coding rules checker. If you select custom from the MISRA or JSF drop-down
list, you must provide a file that specifies the rules to check.

1 Open project configuration.

2 In the Configuration tree view, select Coding Rules.

3 Select the check box for the type of coding rules you wish to check

4 From the corresponding drop-down list, select custom. The software
displays a new field for your custom file.

5 To the right of this field, click Edit. A New File window opens, displaying
a table of rules.

Select On for the rules you want to check.

12-6

Select Specific MISRA® or JSF® Coding Rules

6 Click OK to save the rules and close the window.

The Save as dialog box opens.

7 In the File field, enter a name for the rules file.

8 Click OK to save the file and close the dialog box.

The full path to the rules file appears. To reuse this rules file for other

projects, type this path name or use the icon in the New File window.

Related
Examples

• “Activate Coding Rules Checker” on page 12-2
• “Create Custom Coding Rules File” on page 12-8

12-7

12 Check Coding Rules from Eclipse

Create Custom Coding Rules File
This example shows how to create a custom coding rules file. You can use this
file to check names or text patterns in your source code against custom rules
that you specify. For each rule, you specify a pattern in the form of a regular
expression. The software compares the pattern against identifiers in the
source code and determines whether the custom rule is violated.

Save Example Code

Save the following code in a file printInitialValue.c:

#include <stdio.h>

typedef struct {
int a;
int b;
} collection;

void main()
{
collection myCollection={0,0};
printf("Initial values in the collection are %d

and %d.",myCollection.a,myCollection.b);
}

Create Coding Rules File

1 Create a Polyspace project. Add printInitialValue.c to the project.

2 On the Configuration pane, select Coding Rules. Select the Check
custom rules box.

3 Click .

The New File window opens, displaying a table of rule groups.

4 From the drop-down list Set the following state to all Custom C rules,
select Off. Click Apply.

12-8

Create Custom Coding Rules File

5 Expand the Structs node. For the option 4.3 All struct fields must
follow the specified pattern:

Column Title Action

On Select .

Convention Enter All struct fields
must begin with s_ and have
capital letters.

Pattern Enter s_[A-Z0-9_]

Comment Leave blank. This column is for
comments that appear in the coding
rules file alone.

Review Coding Rule Violations

1 Save the file and run the verification. On the Results Summary pane,
you see two violations of rule 4.3. Select the first violation.

a On the Source pane, the line int a; is marked.

b On the Check Details pane, you see the error message you had
entered, All struct fields must begin with s_ and have capital
letters.

2 Right-click on the Source pane and select Open Source File. The file
printInitialValue.c opens in a text editor.

3 In the file, replace all instances of a with s_A and b with s_B. Save the file
and rerun the verification.

The custom rule violations no longer appear on the Results Summary
pane.

Related
Examples

• “Activate Coding Rules Checker” on page 12-2
• “Select Specific MISRA or JSF Coding Rules” on page 12-6

Concepts • “Contents of Custom Coding Rules File” on page 12-10

12-9

12 Check Coding Rules from Eclipse

Contents of Custom Coding Rules File
In a custom coding rules file, each rule appears in the following format:

N.n off|warning

convention=violation_message

pattern=regular_expression

• N.n — Custom rule number, for example, 1.2.

• off — Rule is not considered.

• warning— The software checks for violation of the rule. After verification,
it displays the coding rule violation on the Results Summary pane.

• violation_message— Software displays this text in an XML file within
the Results/Polyspace-Doc folder.

• regular_expression — Software compares this text pattern against a
source code identifier that is specific to the rule. See “Custom Naming
Convention Rules” on page 3-3.

The keywords convention= and pattern= are optional. If present, they
apply to the rule whose number immediately precedes these keywords. If
convention= is not given for a rule, then a standard message is used. If
pattern= is not given for a rule, then the default regular expression is
used, that is, .*.

Use the symbol # to start a comment. Comments are not allowed on lines
with the keywords convention= and pattern=.

The following example contains three custom rules: 1.1, 8.1, and 9.1.

Custom rules configuration file

1.1 off # Disable custom rule number 1.1

8.1 warning # Violation of custom rule 8.1 produces a warning

convention=Global constants must begin by G_ and must be in capital letters.

pattern=G_[A-Z0-9_]*

9.1 warning # Non-adherence to custom rule 9.1 produces a warning

convention=Global variables should begin by g_.

pattern=g_.*

12-10

Contents of Custom Coding Rules File

Related
Examples

• “Create Custom Coding Rules File” on page 12-8

12-11

12 Check Coding Rules from Eclipse

Exclude Files from Rules Checking
This example shows how to exclude certain files from coding rules checking.

1 Open project configuration.

2 In the Configuration tree view, select Coding Rules.

3 Select the Files and folders to ignore check box.

4 From the corresponding drop-down list, select one of the following:

• all-headers (default) — Rule checker excludes folders that contain only
header files, that is, folders without source files.

• all— Rule checker excludes all include folders. For example, if you are
checking a large code base with standard or Visual headers, excluding
include folders can significantly improve the speed of code analysis.

• custom — Rule checker excludes files or folders specified in the

File/Folder view. To add files to the custom File/Folder list, select
to choose the files and folders to exclude. To remove a file or folder from

the list of excluded files and folders, select the row. Then click .

Related
Examples

• “Activate Coding Rules Checker” on page 12-2

12-12

Allow Custom Pragma Directives

Allow Custom Pragma Directives
This example shows how to exclude custom pragma directives from coding
rules checking. MISRA C rule 3.4 requires checking that pragma directives
are documented within the documentation of the compiler. However, you can
allow undocumented pragma directives to be present in your code.

1 Open project configuration.

2 In the Configuration tree view, select Coding Rules.

3 To the right of Allowed pragmas, click .

In the Pragma view, the software displays an active text field.

4 In the text field, enter a pragma directive.

5 To remove a directive from the Pragma list, select the directive. Then

click .

Related
Examples

• “Activate Coding Rules Checker” on page 12-2

12-13

12 Check Coding Rules from Eclipse

Specify Boolean Types
This example shows how to specify data types you want Polyspace to consider
as Boolean during MISRA C rules checking. The software applies this
redefinition only to data types defined by typedef statements. The use of this
option may affect the checking of MISRA C rules 12.6, 13.2, and 15.4.

1 Open project configuration.

2 In the Configuration tree view, select Coding Rules.

3 To the right of Effective boolean types, click .

In the Type view, the software displays an active text field.

4 In the text field, specify the data type that you want Polyspace to treat
as Boolean.

5 To remove a data type from the Type list, select the data type. Then click

.

Related
Examples

• “Activate Coding Rules Checker” on page 12-2

12-14

Find Coding Rule Violations

Find Coding Rule Violations
This example shows how to check for coding rule violations alone.

1 Open project configuration.

2 In the Configuration tree view, select Coding Rules. Activate the
desired coding rule checker.

3 In the Configuration tree view, select Bug Finder Analysis.

4 Clear the Find defects check box.

5 Click to run the coding rules checker without checking defects.

You can view the results by selecting the RuleSet-report.xml file from
the results folder.

Related
Examples

• “Activate Coding Rules Checker” on page 12-2
• “Select Specific MISRA or JSF Coding Rules” on page 12-6
• “Review Coding Rule Violations” on page 12-16

12-15

12 Check Coding Rules from Eclipse

Review Coding Rule Violations
This example shows how to review coding rule violations in the Results
Manager perspective once code analysis is complete. After analysis, the
Results Summary tab displays the rule violations with a

• symbol for predefined coding rules such as MISRA C:2004.

• symbol for custom coding rules.

1 Select a coding-rule violation on the Results Summary pane.

• The predefined rules such as MISRA C or C++ or JSF C++ are indicated
by .

• The custom rules are indicated by .

2 On the Check Details pane, view the location and description of the
violated rule. In the source code, the line containing the violation appears
highlighted.

3 Review the violation. On the Check Review tab, select a Classification
to describe the severity of the issue:

• High

• Medium

• Low

• Not a defect

4 Select a Status to describe how you intend to address the issue:

• Fix

12-16

Review Coding Rule Violations

• Improve

• Investigate

• Justify with annotations

• No Action Planned

• Other

• Restart with different options

• Undecided
You can also define your own statuses.

5 In the comment box, enter additional information about the violation.

6 To open the source file that contains the coding rule violation, on the
Source pane, right-click the code with the purple check. From the context
menu, select Open Source File. The file opens in your text editor.

7 Fix the coding rule violation.

8 When you have corrected the coding rule violations, run the analysis again.

Related
Examples

• “Activate Coding Rules Checker” on page 12-2
• “Find Coding Rule Violations” on page 12-15
• “Apply Coding Rule Violation Filters” on page 12-18

12-17

12 Check Coding Rules from Eclipse

Apply Coding Rule Violation Filters
This example shows how to use filters in the Results Summary pane to focus
on specific kinds of coding rule violations. By default, the software displays
both coding rule violations and defects.

To filter violations by rule number:

1 On the Results Summary pane, place your cursor on the Check column
header. Click the filter icon that appears.

2 From the context menu, clear the All check box.

3 Select the violated rule numbers that you want to focus on.

4 Click OK.

Related
Examples

• “Activate Coding Rules Checker” on page 12-2
• “Review Coding Rule Violations” on page 12-16

12-18

13

Find Bugs from Eclipse

• “Run Analysis” on page 13-2

• “Customize Analysis Options” on page 13-3

13 Find Bugs from Eclipse™

Run Analysis
1 In the Polyspace Run window, select Bug Finder from the product
configuration icon.

2 In the Project Explorer, select the files you want to analyze.

3 Do one of the following to run an analysis:

• Right-click on your selection and from the context menu select Start
Polyspace Bug Finder

• From the toolbar, select Polyspace > Start Polyspace

Follow your analysis in the Progress Monitor tab of the Polyspace Log
window. If your analysis fails, error and warning messages appear in the
Output Summary tab.

13-2

Customize Analysis Options

Customize Analysis Options
The software uses a set of default analysis options preconfigured for your
coding language and operating system. For each project, you can customize
your configuration.

1 From the toolbar, select Polyspace > Configure Project.

The Polyspace Bug Finder Configuration window appears.

2 Select the different panes to change your analysis configuration.

For example, on the Coding Rules pane, select one of the coding rule sets
to add coding rules checking to your analysis.

For information about the different analysis options, see “Analysis Options
for C” or “Analysis Options for C++”.

13-3

13 Find Bugs from Eclipse™

13-4

14

View Results in Eclipse

• “Filter and Group Results” on page 14-2

• “View Results” on page 14-8

• “Review and Fix Results” on page 14-9

• “Understanding the Results Views” on page 14-12

14 View Results in Eclipse™

Filter and Group Results
This example shows how to filter and group defects on the Results Summary
tab. To organize your review of results, use filters and groups when you
want to:

• Review certain categories of defects in preference to others. For instance,
you first want to address the defects resulting from Missing or invalid
return statement.

• Not address the full set of coding rule violations detected by the coding
rules checker.

• Review only those defects that you have already assigned a certain status.
For instance, you want to review only those defects to which you have
assigned the status, Investigate.

• Review defects from a particular file or function. Because of continuity of
code, reviewing these defects together can help you organize your review
process.

If you have written the code for a particular source file, you can review
the defects only in that file.

Review Defects in a Given Category

To review the defects resulting from Missing or invalid return
statement:

1 On the Results Summary tab, from the drop-down list, select Checks
by Family.

The defects are grouped by type.

14-2

Filter and Group Results

2 Under the category Data-flow - Defects, expand the subcategoryMissing
or invalid return statement - Defects.

Expand Missing or invalid return statement - Defects to view all
instances of this defect type.

3 To see further information about an instance, select it. The information
appears on the Check Details tab.

14-3

14 View Results in Eclipse™

4 To view only the defects resulting from Missing or invalid return
statement, on the Results Summary tab, from the drop-down list, select
List of Checks.

The defects appear ungrouped.

5 Place your cursor on the Check column head. The filter icon appears.

6 Click the filter icon.

A context menu lists the filter options available.

7 Clear the All check box.

8 Select theMissing or invalid return statement check box. Click OK.

14-4

Filter and Group Results

The Results Summary tab displays only the defects resulting from the
Missing or invalid return statement error.

Review Defects with Given Status

To review only the defects with Investigate status:

1 On the Results Summary tab, place your cursor on the Status column
head.

2 Click the filter icon.

A context menu lists the filter options available.

3 Clear the All check box.

4 Select the Investigate check box. Click OK.

The Results Summary tab displays only the defects with the Investigate
status.

Review Defects in a File

To review the defects in the file, Missing_Return.c:

1 On the Results Summary tab, from the drop-down list, select Checks
by File/Function.

14-5

14 View Results in Eclipse™

The defects displayed are grouped by files. The file names are sorted
alphabetically. Within each file name, the defects are grouped by functions,
sorted alphabetically.

2 To view the defects in Missing_Return.c, expand a function name under
the category, Missing_Return.c - Defects.

To view further information on a bug, select the bug. The information on
the bug appears on the Check Details tab.

3 To view only the defects in Missing_Return.c, on the Results Summary
tab, from the drop-down list, select List of Checks.

The Results Summary pane displays all results ungrouped.

14-6

Filter and Group Results

4 Place your cursor on the File column head.

5 Click the filter icon.

A context menu lists the filter options available.

6 Clear the All check box.

7 Select the Missing_Return.c - Defects check box. Click OK.

The Results Summary tab displays only the defects in Missing_Return.c.

Tip If you apply a filter on a column on the Results Summary pane, the
column header displays the number of check boxes selected in the filter menu.
Use this information to keep track of the filters you applied.

Related
Examples

• “View Results” on page 14-8
• “Review and Fix Results” on page 14-9

14-7

14 View Results in Eclipse™

View Results
This example shows how to view the results of Polyspace Bug Finder analysis.
After you run an analysis, you can view the results either in Eclipse™ or from
the Polyspace Bug Finder Results Manager.

View Results in Eclipse

To view results in Eclipse:

1 Run the Polyspace Bug Finder analysis.

After the analysis, the results open automatically in the Results
Summary tab.

2 To explicitly open the Results Summary tab after the analysis, select
Polyspace > Show View > Show Results Summary view.

View Results in Polyspace Environment

To view results in the Polyspace Bug Finder Results Manager:

1 Run the Polyspace Bug Finder analysis.

2 Select Polyspace > Open Results in PVE.

Related
Examples

• “Run Analysis” on page 13-2

14-8

Review and Fix Results

Review and Fix Results
This example shows how to review and comment results obtained from
Polyspace Bug Finder analysis. When reviewing results, you can assign a
status and classification to the defects and enter comments to describe the
results of your review. These actions help you to track the progress of your
review and avoid reviewing the same defect twice. If you run successive
analyses on the same file, the review status, classification and comments from
the previous analysis will be automatically imported into the next.

Review and Comment Individual Defect

1 On the Results Summary tab, select the defect that you want to review.

The Check Details tab displays information about the current defect.

2 On the Results Summary tab, enter a Classification for the defect to
describe its severity:

• High

• Medium

• Low

• Not a defect

3 On the Results Summary tab, enter a Status to describe how you intend
to address the defect:

• Fix

• Improve

• Investigate

• Justify

• No action planned

14-9

14 View Results in Eclipse™

• Other

4 On the Results Summary tab, click the Comment field. Enter remarks,
for example, defect or justification information, in the new window that
opens.

Review and Comment Group of Defects

1 On the Results Summary tab, select a group of defects using one of the
following methods:

• For contiguous defects, left-click the first defect. Then Shift-left click
the last defect.

To group together defects belonging to a certain category, click the
Check column header on the Results Summary tab.

• For non-contiguous defects, Ctrl-left click each defect.

14-10

Review and Fix Results

• For defects of a similar category, right-click one defect from that
category. From the context menu, select Select All "Defect Category"
Checks, for instance, Select All "Missing or invalid return
statement" Checks.

2 On the Results Summary tab, enter Classification, Status and
Comments. The software applies this information to all selected defects.

Related
Examples

• “View Results” on page 14-8
• “Filter and Group Results” on page 14-2

14-11

14 View Results in Eclipse™

Understanding the Results Views

In this section...

“Results Summary” on page 14-12

“Check Details” on page 14-14

Results Summary
The Results Summary pane lists the defects and coding rule violations along
with their attributes. To organize your results review, from the drop-down
list on this pane, select one of the following options:

• List of checks: Lists defects and coding rule violations in alphabetical
order.

• Checks by Family: Lists results grouped by category. For more
information on the defects covered by a category, see “Polyspace Bug
Finder Defects”.

• Checks by Class: Lists results grouped by class. Within each class, the
results are grouped by method. The first group, Global Scope, lists results
not occurring in a class definition.

This option is available for C++ code only.

• Checks by File/Function: Lists results grouped by file. Within each file,
the results are grouped by function.

For each defect, the Results Summary pane contains the defect attributes,
listed in columns:

14-12

Understanding the Results Views

Attribute Description

Family Group to which the defect
belongs. For instance, if you
choose the grouping Checks by
File/Function, this column
contains the name of the file and
function containing the defect.

ID Unique identification number of the
defect. In the default view on the
Results Summary pane, the defects
appear sorted by this number.

Type Defect or coding rule violation.

Category Category of the defect. For more
information on the defects covered by
a category, see the defect reference
pages.

Check Description of the defect

File File containing the instruction where
the defect occurs

Class Class containing the instruction
where the defect occurs. If the defect
is not inside a class definition, then
this column contains the entry,
Global Scope.

Function Function containing the instruction
where the defect occurs. If
the function is a method of a
class, it appears in the format
class_name::function_name.

14-13

14 View Results in Eclipse™

Attribute Description

Classification Level of severity you have assigned
to the defect. The possible levels are:
• High

• Medium

• Low

• Not a defect

Status Review status you have assigned to
the check. The possible statuses are:
• Fix

• Improve

• Investigate

• Justify

• No action planned

• Other

Comments Comments you have entered about
the check

To show or hide any of the columns, right-click anywhere on the column titles.
From the context menu, select or clear the title of the column that you want
to show or hide.

Using this pane, you can:

• Navigate through the checks. For more information, see “Review and Fix
Results” on page 14-9.

• Organize your check review using filters on the columns. For more
information, see “Filter and Group Results” on page 14-2.

Check Details
The Check Details pane contains detailed information about a specific
defect. Select a defect on the Results Summary pane to reveal further
information about the defect on the Check Details pane.

14-14

Understanding the Results Views

• The top right hand corner shows the file and function containing the defect,
in the format file_name/function_name.

• The yellow box contains the name of the defect, along with an explanation.

• The Event column lists the sequence of code instructions causing the
defect. The Scope column lists the name of the function containing the
instructions. The Line column lists the line number of the instructions.

• The Variable trace check box when selected reveals an additional set of
instructions that are related to the defect.

14-15

14 View Results in Eclipse™

14-16

15

Check Coding Rules from
Microsoft Visual Studio

15 Check Coding Rules from Microsoft® Visual Studio®

Activate C++ Coding Rules Checker
To check coding rule compliance, before running an analysis, you must set
an option in your project. Polyspace software finds the violations during the
compile phase. You can view coding rule violations alongside your analysis
results.

To set the rule checking option:

1 Select the files you wish to analyze.

2 Right-click on your selection and select Edit Polyspace Configuration.

3 In the Polyspace Bug Finder Configuration window, from the Configuration
tree, select Coding Rules.

4 Under Coding Rules, select the check box next to the type of coding rules
you wish to check.

For C++ code, you can check compliance with MISRA C++ or JSF C++,
and a custom rules file.

5 For MISRA and JSF rule checking, you can select a subset of rules to check
from the corresponding drop-down list.

The tables below show the options for each coding rule set:

MISRA C++

Option Explanation

required-rules
All required MISRA C++ coding rules. Violations
are reported as warnings.

all-rules
All required and advisory MISRA C++ coding
rules. Violations are reported as warnings.

SQO-subset1

A subset of MISRA C++ rules that have a direct
impact on the selectivity. Violations are reported
as warnings. For more information, see “Software
Quality Objective Subsets (C++)” on page 3-60.

15-2

Activate C++ Coding Rules Checker

Option Explanation

SQO-subset2

A second subset of rules that have an indirect
impact on the selectivity, as well as the rules
contained in SQO-subset1. Violations are reported
as warnings. For more information, see “Software
Quality Objective Subsets (C++)” on page 3-60.

custom

A specified set of MISRA C++ coding rules. When
you select this option, you must specify the MISRA
C++ rules to check and whether to report an error
or warning for violations of each rule. For more
information, see “Select Specific MISRA or JSF
Coding Rules” on page 4-6.

JSF C++

Option Explanation

shall-rules All Shall rules, which are mandatory rules that
require checking.

shall-will-rules All Shall and Will rules. Will rules are
mandatory rules that do not require checking.

all-rules All Shall,Will, and Should rules. Should rules
are advisory rules.

custom A specified set of JSF C++ coding rules. When
you select this option, you must specify the JSF
C++ rules to check and whether to report an error
or warning for violations of each rule. For more
information, see “Select Specific MISRA or JSF
Coding Rules” on page 4-6.

6 For Custom rule checking, in the corresponding field, specify the path to
your custom rules file or click Edit to create one. See “Create Custom
Coding Rules” on page 4-8 for more information.

7 Save you changes and close the configuration window.

15-3

15 Check Coding Rules from Microsoft® Visual Studio®

When you run an analysis, Polyspace checks coding rule compliance during
the compilation phase of the analysis.

15-4

16

Find Bugs from Microsoft
Visual Studio

• “Run Analysis” on page 16-2

• “Monitor Analysis” on page 16-5

• “Customize Polyspace Options” on page 16-6

16 Find Bugs from Microsoft® Visual Studio®

Run Analysis
1 From Visual Studio, select Polyspace > Display Polyspace Log to view
the Polyspace Log window.

2 In the Visual Studio Solution Explorer view, select one or more files
that you want to analyze.

3 Right-click the selection, and select Polyspace Verification.

The Easy Settings dialog box opens.

16-2

Run Analysis

4 In the Easy Settings dialog box, you can specify the following options for
your analysis:

• Under Settings, configure the following:

– Precision — Precision of analysis (-0)

– Passes — Level of analysis (-to)

– Results folder – Location where software stores analysis results
(-results-dir)

• Under Verification Mode Settings, configure the following:

16-3

16 Find Bugs from Microsoft® Visual Studio®

– Generate main or Use existing— Whether Polyspace generates a
main subprogram (-main-generator) or uses an existing subprogram
(-main)

– Class — Name of class to analyze (-class-analyzer)

– Class analyzer calls — Functions called by generated main
subprogram (-class-analyzer-calls)

– Class only— Analysis of class contents only (-class-only)

– Main generator write — Type of initialization for global variables
(-main-generator-writes-variables)

– Main generator calls — Functions (not in a class) called by
generated main subprogram (-main-generator-calls)

– Function called before main— Function called before all functions
(-function-call-before-main)

• Under Scope, you can modify the list of files and classes to analyze.

For information on how to choose your options, see “Analysis Options for
C++”.

Note In the Project Manager perspective of the Polyspace interface, you
configure options that you cannot set in the Easy Settings dialog box. See
“Customize Polyspace Options” on page 16-6.

5 Make sure the Use Code Prover analysis check box is cleared.

6 Click Start to start the analysis.

To follow the progress of an analysis, see “Monitor Analysis” on page 16-5

16-4

Monitor Analysis

Monitor Analysis
Once you start the software, you can follow its progress in the Polyspace
Log view.

Compilation errors are highlighted as links. Click a link to display the file
and line that produced the error.

If the analysis is being carried out on a server, follow its progress in the
Polyspace Queue Manager.

Select Polyspace > Spooler to follow the progress in the Polyspace Queue
Manager.

16-5

16 Find Bugs from Microsoft® Visual Studio®

Customize Polyspace Options
In the Easy Settings dialog box in Visual Studio, you specify only a subset of
the Polyspace analysis options.

To customize other analysis options:

1 Select the files you wish to analyze.

2 Right-click on your selection and select Edit Polyspace Configuration
from the context menu.

3 In the Polyspace Bug Finder configuration window, use the different panes
to customize your analysis options.

For more information about specific options, see “Analysis Options for C++”.

4 Save your changes and close the configuration window.

Next time you run an analysis, Polyspace uses the
ProjectName_UserSettings.psprj settings.

16-6

17

OpenResults fromMicrosoft
Visual Studio

17 Open Results from Microsoft® Visual Studio®

Open Results in Polyspace Environment
To view your results:

• From the Polyspace Log window, select .

• Select Polyspace > Polyspace — Results Manager, then open results
from the Polyspace interface. For instructions, see “Open Results” on
page 6-2

17-2

	toc
	Project Configuration
	What Is a Project?
	What is a Project Template?
	Open Polyspace Bug Finder
	Set Up Polyspace Metrics
	Requirements for Polyspace Metrics
	Start Polyspace Metrics Server
	Configure Polyspace Preference
	Configure Web Server for HTTPS
	Change Web Server Port Number for Polyspace Metrics Server

	Set Up Remote Verification and Analysis
	Requirements for Remote Analysis
	Start Server for Remote Analysis and Polyspace Metrics
	Configure Polyspace Preferences

	Create New Project
	Add Source Files and Include Folders
	Add Sources and Includes
	Manage Include File Sequence
	Specify Analysis Options
	Specify Options in User Interface
	Specify Options from DOS and UNIX Command Line
	Specify Options from MATLAB Command Line

	Save Analysis Options as Project Template
	Specify Text Editor
	Define Custom Review Status
	Define Custom Status
	Add Justification to Existing Status
	Compilation Errors
	Model Synchronous Tasks
	Solution 1
	Solution 2
	Prepare Multitasking Code
	Model Interruptions and Asynchronous Events and Tasks
	Solution 1: Where Interrupts (ISRs) Cannot Preempt Each Other
	Solution 2: Where Interrupts Can Preempt Each Other
	Are Interruptions Maskable or Preemptive?
	Model Shared Variables
	Critical Sections
	Original Code
	File Replacing the Original Include File
	Command-Line to Launch Polyspace Analysis
	Mutual Exclusion
	Semaphores
	Effects of Imprecision on Shared Variable List

	Model Mailbox Messaging
	Atomicity and Interrupted Instructions

	Priorities
	Annotate Code for Known Defects
	How to Add Annotations
	Syntax for Annotations
	Syntax Examples:

	Annotate Code for Rule Violations
	How to Add Annotations
	Syntax for Annotations
	Syntax Examples:

	Copy and Paste Annotations
	Predefined Target Processor Specifications
	Modify Predefined Target Processor Attributes
	Specify Generic Target Processors
	Define Generic Target
	Common Generic Targets
	View or Modify Existing Generic Targets
	Delete Generic Target

	Compile Operating System-Dependent Code
	Predefined Compilation Flags for C Code
	Predefined Compilation Flags for C++ Code
	My Target Application Runs on Linux
	My Target Application Runs on Solaris
	My Target Application Runs on Vxworks
	My Target Application Does Not Run on Linux, vxworks nor Solaris

	Address Alignment
	Ignore or Replace Keywords Before Compilation
	Content of myTpl.pl file
	Perl Regular Expression Summary

	Analyze Keil€or IAR Dialects
	Gather Compilation Options Efficiently
	Example
	Specify Data Ranges for Global Variables
	Overview of Data Range Specifications (DRS)
	Specify Data Ranges Using DRS Template
	Remove Non Applicable Entries from DRS File
	DRS Configuration Settings
	Specify Data Ranges Using Existing DRS Configuration
	Edit Existing DRS Configuration
	XML Format of DRS File
	Syntax Description — XML Elements
	Valid Modes and Default Values

	Specify Data Ranges Using Text Files
	DRS Text File Format
	Tips for Creating DRS Text Files
	Example DRS Text File

	Setting Up Project: Additional Information
	Create Projects Using Visual Studio Information
	Use Visual Studio Project
	Trace Visual Studio Build

	Cannot create project from Visual Studio build
	Storage of Polyspace Preferences

	Coding Rule Sets and Concepts
	Rule Checking
	Custom Naming Convention Rules
	Polyspace MISRA C and MISRA AC AGC Checkers
	Software Quality Objective Subsets (C)
	Rules in SQO-Subset1
	Rules in SQO-Subset2

	Software Quality Objective Subsets (AC AGC)
	Rules in SQO-Subset1
	Rules in SQO-Subset2

	MISRA C:2004 Coding Rules
	Supported MISRA C:2004 Rules
	Environment
	Language Extensions
	Documentation
	Character Sets
	Identifiers
	Types
	Constants
	Declarations and Definitions
	Initialization
	Arithmetic Type Conversion
	Pointer Type Conversion
	Expressions
	Control Statement Expressions
	Control Flow
	Switch Statements
	Functions
	Pointers and Arrays
	Structures and Unions
	Preprocessing Directives
	Standard Libraries
	Runtime Failures

	MISRA C:2004 Rules Not Checked
	Environment
	Language Extensions
	Documentation
	Structures and Unions

	Polyspace MISRA C++ Checker
	Software Quality Objective Subsets (C++)
	SQO Subset 1 – Direct Impact on Selectivity
	SQO Subset 2 – Indirect Impact on Selectivity

	MISRA C++ Coding Rules
	Supported MISRA C++ Coding Rules
	Language Independent Issues
	General
	Lexical Conventions
	Basic Concepts
	Standard Conversions
	Expressions
	Statements
	Declarations
	Declarators
	Classes
	Derived Classes
	Member Access Control
	Special Member Functions
	Templates
	Exception Handling
	Preprocessing Directives
	Library Introduction
	Language Support Library
	Diagnostic Library
	Input/output Library

	MISRA C++ Rules Not Checked
	Language Independent Issues
	General
	Lexical Conventions
	Standard Conversions
	Expressions
	Declarations
	Classes
	Templates
	Exception Handling
	Preprocessing Directives
	Library Introduction

	Polyspace JSF C++ Checker
	JSF C++ Coding Rules
	Supported JSF C++ Coding Rules
	Code Size and Complexity
	Environment
	Libraries
	Pre-Processing Directives
	Header Files
	Style
	Classes
	Namespaces
	Templates
	Functions
	Comments
	Declarations and Definitions
	Initialization
	Types
	Constants
	Variables
	Unions and Bit Fields
	Operators
	Pointers and References
	Type Conversions
	Flow Control Standards
	Expressions
	Memory Allocation
	Fault Handling
	Portable Code

	JSF++ Rules Not Checked
	Code Size and Complexity
	Rules
	Environment
	Libraries
	Header Files
	Style
	Classes
	Namespaces
	Templates
	Functions
	Comments
	Initialization
	Types
	Unions and Bit Fields
	Operators
	Type Conversions
	Expressions
	Memory Allocation
	Portable Code
	Efficiency Considerations
	Miscellaneous
	Testing

	Check Coding Rules from the Polyspace Environment
	Activate Coding Rules Checker
	MISRA C:2004
	MISRA AC AGC
	MISRA C++
	JSF C++
	Select Specific MISRA or JSF Coding Rules
	Create Custom Coding Rules
	Save Example Code
	Create Coding Rules File
	Review Coding Rule Violations
	Format of Custom Coding Rules File
	Exclude Files From Rule Checking
	Allow Custom Pragma Directives
	Specify Boolean Types
	Find Coding Rule Violations
	Review Coding Rule Violations
	Apply Coding Rule Violation Filters

	Find Bugs From the Polyspace Environment
	Choose Specific Defects
	Run Local Analysis
	Run Remote Batch Analysis
	Monitor Analysis
	Specify Results Folder

	View Results in the Polyspace Environment
	Open Results
	Open Results from Active Project
	Open Results File Using File Browser
	View Results Summary in Polyspace Metrics
	Open Polyspace Metrics
	View Results Summary
	Download Results From Polyspace Metrics
	Open Polyspace Metrics
	Download Results
	Filter and Group Results
	Review Defects in a Given Category
	Review Defects with Given Status
	Review Defects in a File
	Generate Reports
	Review and Comment Results
	Review and Comment Individual Defect
	Review and Comment Group of Defects
	Save Review Comments
	Import Comments from Previous Analyses
	Import Comments from Previous Analysis
	Change Preferences for Automatically Importing Comments
	Code Metrics
	View Code Sequence Causing Defect
	Results Folder Contents
	Files in the Results Folder
	Files in the ALL Subfolder
	Files in the Polyspace-Doc Subfolder

	Windows in the Results Manager Perspective
	Dashboard
	Code covered by analysis
	Defect distribution by category or file
	Coding rule violations by rule or file
	Results Summary
	Source
	Tooltips
	Examine Source Code
	Expand Macros
	Manage Multiple Files in Source Pane
	View Code Block

	Check Details

	Bug Finder Defect Categories
	Numerical
	Static Memory
	Dynamic Memory
	Programming
	Data-flow
	Other

	Common Weakness Enumeration from Bug Finder Defects

	Command-Line Analysis
	Run Analysis from the Command Line
	Usage of Bug Finder at the Command Line
	Complete Workflow Examples
	Local Analysis from Build
	Remote Analysis

	Manage Remote Analyses at the Command Line
	Create Projects Automatically from Your Build System
	Create Project in User Interface
	Create Project from DOS and UNIX Command Line
	Create Project from MATLAB Command Line

	Requirements for Project Creation from Build Systems

	Polyspace Bug Finder Analysis in Simulink
	Embedded Coder Considerations
	Subsystems
	Default Options
	Recommended Polyspace Bug Finder Options for Analyzing Generated
	Hardware Mapping Between Simulink and Polyspace

	TargetLink Considerations
	TargetLink Support
	Subsystems
	Default Options
	Lookup Tables
	Code Generation Options

	Run Analysis on Generated Code
	View Results in the Polyspace Environment
	Identify Errors in Simulink Models

	Configure Model for Code Analysis
	Model Configuration for Code Generation and Analysis
	Configure Simulink Model
	Recommended Model Settings for Code Analysis
	Check Simulink Model Settings
	Check Simulink Model Settings Before Code Generation
	Check Simulink Model Settings Before Analysis
	Annotate Blocks for Known Errors or Coding-Rule Violations

	Configure Code Analysis Options
	Polyspace Configuration for Generated Code
	Include Handwritten Code
	Specify Remote Analysis
	Configure Analysis Depth for Referenced Models
	Specify Location of Results
	Check Coding Rules Compliance
	Configure Polyspace Options from Simulink
	Configure Polyspace Project Properties
	Create a Polyspace Configuration File Template
	Specify Header Files for Target Compiler
	Open Polyspace Results Automatically
	Remove Polyspace Options From Simulink Model

	Run Polyspace on Generated Code
	Specify Type of Analysis to Perform
	Run Analysis for Embedded Coder
	Run Analysis for TargetLink
	Monitor Progress
	Local Analyses
	Remote Batch Analyses

	Check Coding Rules from Eclipse
	Activate Coding Rules Checker
	MISRA C:2004
	MISRA AC AGC
	MISRA C++
	JSF C++
	Select Specific MISRA or JSF Coding Rules
	Create Custom Coding Rules File
	Save Example Code
	Create Coding Rules File
	Review Coding Rule Violations
	Contents of Custom Coding Rules File
	Exclude Files from Rules Checking
	Allow Custom Pragma Directives
	Specify Boolean Types
	Find Coding Rule Violations
	Review Coding Rule Violations
	Apply Coding Rule Violation Filters

	Find Bugs from Eclipse
	Run Analysis
	Customize Analysis Options

	View Results in Eclipse
	Filter and Group Results
	Review Defects in a Given Category
	Review Defects with Given Status
	Review Defects in a File
	View Results
	View Results in Eclipse
	View Results in Polyspace Environment
	Review and Fix Results
	Review and Comment Individual Defect
	Review and Comment Group of Defects
	Understanding the Results Views
	Results Summary
	Check Details

	Check Coding Rules from Microsoft Visual Studio
	Activate C++ Coding Rules Checker
	MISRA C++
	JSF C++

	Find Bugs from Microsoft Visual Studio
	Run Analysis
	Monitor Analysis
	Customize Polyspace Options

	Open Results from Microsoft Visual Studio
	Open Results in Polyspace Environment

	tables
	Predefined Target Processor Specifications
	ST7 (Hiware C compiler : HiCross for ST7)
	ST9 (GNU C compiler : gcc9 for ST9)
	Hitachi H8/300, H8/300L
	Hitachi H8/300H, H8S, H8C, H8/Tiny
	Example: -dialect keil -sfr-types sfr=8
	Example: -dialect iar -sfr-types sfr=8
	C Code Settings
	C++ Code Settings
	C Code Settings
	C++ Code Settings

